BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)

)

)

)

CLERK'S OFFICE

APR 0 4 2005

STATE OF ILLINOIS Pollution Control Board

IN THE MATTER OF: PROPOSED AMENDMENTS TO DISSOLVED OXYGEN STANDARD 35 IILL. ADM. CODE 302.206

NOTICE

TO: Dorothy Gunn, Clerk Illinois Pollution Control Board James R. Thompson Center 100 W. Randolph Street 11-500 Chicago, Illinois 60601 (OVERNIGHT VIA MAIL) Richard McGill, Hearing Officer Illinois Pollution Control Board James R. Thompson Center 100 W. Randolph Street, Suite 11-500 Chicago, Illinois 60601 (OVERNIGHT VIA MAIL)

R04-25

SEE ATTACHED SERVICE LIST Regular Mail

PLEASE TAKE NOTICE that we have filed with the Office of the Clerk of the Pollution Control Board the Illinois Environmental Protection Agency's <u>Pre-filed</u> <u>Testimony of Toby Frevert and Roy Smogor</u> and the Illinois Department of Natural Resources' <u>Pre-filed Testimony of Joel Cross</u>, a copy of which is herewith served upon you.

Dated: April 3, 2006

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

Stefanie N. Diers Assistant Counsel Division of Legal Counsel

Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62794-9276 (217) 782-5544 ILLINOIS DEPARTMENT OF NATURAL RESOURCES

Stànley Yonkauski, Jr. One of Its Attorneys

Illinois Department of Natural Resources One Natural Resources Way Springfield, Illinois 62702-1271

THIS FILING IS SUBMITTED ON RECYCLED PAPER

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

IN THE MATTER OF: PROPOSED AMENDMENTS TO DISSOLVED OXYGEN STANDARD 35 III. Adm. Code 302.206

R04-25

OLEAK'S OFFICE

RECEN

STATE OF ILLINOIS Pollution Control Board

PRE-FILED TESTIMONY OF TOBY FREVERT

)

)

I am Toby Frevert, Manager of the Division of Water Pollution Control for the Illinois Environmental Protection Agency ("Illinois EPA"). I thank the Board for hearing my testimony today and allowing Illinois EPA and the Illinois Department of Natural Resources ("IDNR") additional time to work on a joint recommendation.

Since the last hearing in August 2005, Illinois EPA and IDNR have continued work to develop a joint recommendation on modification and updates to Illinois' current dissolved oxygen standard. Illinois EPA and IDNR staff reviewed and analyzed General Use water data to determine what waters warrant a dissolved oxygen standard incrementally higher than a base level deemed generally protective of most general use waters. This process proved to be complex and time consuming. Joel Cross and Roy Smogor will present a brief overview of the process used to develop our recommendation, and other personnel of the Agency and Department will be available to respond to questions and provide more specificity as desired.

Our recommendation to the Board establishes a two leveled dissolved oxygen standard. Level One is a base condition patterned after the structure recommended in USEPA's National Criteria document and generally protective of a full and diverse aquatic community. Level Two sets incrementally higher

dissolved oxygen levels for those systems supporting species believed to associate with higher ambient dissolved oxygen concentrations. Specific language of our recommended dissolved oxygen standard is contained in Attachment 1 of this testimony for the Board's consideration. Significant components of that recommendation include:

1) Incorporation of a narrative provision supplementing the numeric provisions of the standard to assure environmentally acceptable conditions are provided throughout the full spectrum of General Use waters. Illinois EPA and IDNR are recommending that General Use waters at all locations maintain sufficient dissolved oxygen concentrations to prevent offensive conditions, as required in Section 302.203 of the Illinois Administrative Code. Quiescent and isolated sectors of General Use waters including wetlands, sloughs, backwaters, and lakes and reservoirs below the thermocline shall be maintained at sufficient dissolved oxygen concentrations to support their natural ecological functions and resident aquatic communities.

2) Average concentration and average daily-minimum concentration: The Illinois EPA and IDNR recommend the inclusion of 5.0 mg/L as a daily minimum and 6.0 mg/l as a daily mean averaged over 7 days during the months when early life stages are present. For the rest of the year, Illinois EPA and IDNR support 3.5 mg/l as a daily minimum, 4.0 mg/l as a daily minimum averaged over 7 days and 5.5 mg/l as a daily mean averaged over 30 days for those waters not listed as needing a higher dissolved oxygen concentration. The Agency and Department believe these concepts recognize the importance of

maintaining sufficiently high levels of dissolved oxygen that ensure long-term support of healthy aquatic life communities.

3) <u>Enhanced waters</u>: The Agency and Department have identified several segments (about 6% of the stream segments in the State) that warrant an enhanced level of protection. These higher dissolved oxygen standards include a daily minimum of 4.0 mg/l which is 0.5 mg/l higher than our base recommendation, daily mean value averaged over a 7-day period of 6.25 mg/l which is 0.25 mg/l higher than the base recommendation and a daily mean averaged over 30 days of 6.0 mg/l, which is 0.5 mg/l higher than the base recommendation.

Our recommendation also includes provisions regarding applicability and implementation considerations. Much of the testimony and discussion during this proceeding relate to the dynamic and variable nature of oxygen concentrations in both the spatial and temporal realm of any specific resource. To address this natural variation in dissolved oxygen concentrations, subparagraph (d) of our proposed regulatory language includes provisions on measurement and calculation of values to assess attainment of the standard. Language has been included within the numeric limits of subparagraphs (b) and (c) specifying that those numeric values apply in the main body of a stream. In other words, we are not restricting applicability of these values to either pool or riffle stretches; rather it applies throughout. The obvious departure from this uniform application applies to isolated areas such as backwater sloughs, and portions of lakes and

reservoirs below the thermocline, where lower oxygen concentrations can be expected to occur naturally.

Finally, I would again like to thank the Board for the opportunity to submit pre-filed testimony and I would be happy to answer any of the Board's questions at the conclusion of the presentation of testimony from the Agency and the Department.

Toby Frevert

ATTACHMENT 1

-

.

1

•

.

ATTACHMENT 1

302.100 Definitions

"thermocline" means the plane of maximum rate of decrease of temperature with respect to depth in a thermally stratified body of water.

Section 302.206 Dissolved Oxygen

General use waters shall maintain dissolved oxygen concentrations at or above the minimum values contained in subsections (a), (b) and (c) of this Section.

(a) General use waters at all locations shall maintain sufficient dissolved oxygen concentrations to prevent offensive conditions as required in Section 302.203 of this Part. Quiescent and isolated sectors of General Use waters including but not limited to wetlands, sloughs, backwaters and lakes and reservoirs below the thermocline shall be maintained at sufficient dissolved oxygen concentrations to support their natural ecological functions and resident aquatic communities.

(b) Except for those waters identified in Appendix D of this Part, the main body of all streams, the water above the thermocline of thermally stratified lakes and reservoirs, and the entire water column of unstratified lakes and reservoirs shall not be less than the following:

(1) During the period of March through July a dissolved concentration of:

(A) 5.0 mg/l at any time; and

(B) 6.0 mg/l as a daily mean averaged over 7 days.

(2) During the period of August through February a dissolved oxygen concentration of:

(A) 3.5 mg/l at any time;

(B) 4.0 mg/l as a daily minimum averaged over 7 days and;

(C) 5.5 mg/l as a daily mean averaged over 30 days.

(c) All sectors within the main body of all streams and rivers identified in Appendix D of this Part shall not be less than:

(1) During the period of March through July a dissolved oxygen concentration of:

(A) 5.0 mg/l at any time; and

(B) 6.25 mg/l as a daily mean averaged over 7 days.

(2) During the period of August through February a dissolved concentration of:

(A) 4.0 mg/l at any time;

(B) 4.5 mg/l as a daily minimum averages over 7 days; and

(C) 6.0 mg/l as a daily mean averaged over 30 days.

(d) Assessing attainment of dissolved oxygen mean and minimum values.

(1) Daily mean is the arithmetic mean of dissolved oxygen value measured in a single 24-hour calendar day.

(2) Daily minimum is the dissolved oxygen value as measured in a single 24-hour calendar day.

(3) The measurements of dissolved oxygen used to determine attainment or lack of attainment with any of the dissolved oxygen standards in this Section must assure daily minima and daily means that represent the true daily minima and daily means.

(4) The dissolved oxygen value used in calculating or determining any daily mean or daily minimum should not exceed the 100% air-saturation value.

Dissolved oxygen (STORET number 00300) shall not be less than 6.0 mg/l during at least 16 hours of any 24 hour period, nor less that 5.0 mg/l at any time.

Section 302.APPENDIX D

List of Streams Segments for Enhanced Dissolved Oxygen Protection

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

)

IN THE MATTER OF: PROPOSED AMENDMENTS TO DISSOLVED OXYGEN STANDARD 35 III. Adm. Code 302.206

R04-25

APR 0 4 2005 STATE OF ILLINOIS Pollution Control Board

PRE-FILED TESTIMONY OF ROY SMOGOR

Good morning. My name is Roy Smogor; I have been employed by the Illinois Environmental Protection Agency ("Illinois EPA") for about 6 years. 1 am a stream biologist with a Master of Science degree in Fisheries and Wildlife Sciences from Virginia Polytechnic Institute and State University. I also have a Bachelor of Science degree in Biology from University of Illinois at Champaign-Urbana. I have several years of experience, in the states of Virginia and Illinois, in developing ways to use information about fish and other aquatic life to determine the overall condition, or health, of streams. Currently I am a Public Service Administrator in the Surface Water Section of the Bureau of Water. The Surface Water Section is responsible for monitoring the resource quality of Illinois streams and lakes. Specifically, we collect biological, chemical, and physical information from waters throughout the state and then interpret and report on this information. Our activities help guide the protection, management, and regulation of Illinois' aquatic natural resources. My pre-filed testimony in this matter provides an overview of the Technical Support Document that explains the joint recommendations, of Illinois EPA and the Illinois Department of Natural Resources ("Illinois DNR"), for the General Use water quality standard for dissolved oxygen.

Since the August 2005 Board hearing in this matter, Illinois EPA has participated in developing a final joint recommendation in response to proposed changes in the dissolved oxygen water quality standard made by the Illinois Association of Wastewater Agencies ("IAWA"). Illinois EPA believes the current dissolved oxygen standard for Illinois General Use waters is too simplistic. The current standard inadequately accounts for the varied dissolved oxygen requirements of aquatic life in these waters. Moreover, the current standard does not account for how dissolved oxygen concentrations vary across a broad range of natural aquatic conditions in Illinois.

The revisions to the current dissolved oxygen General Use water quality standard being recommended today by Illinois EPA and Illinois DNR are based primarily on the U. S. Environmental Protection Agency's (U.S. EPA) 1986 national-criteria document for dissolved oxygen. Illinois EPA and Illinois DNR used this 1986 document as a foundation from which to interpret and incorporate more-recent information specifically applicable to the dissolved oxygen needs of aquatic life in Illinois waters. Although revisions to the current dissolved oxygen standard proposed by IAWA in April 2004 are also based on U.S. EPA's national-criteria document, Illinois EPA's recommendations differ from those of IAWA in the four following ways:

1) Illinois EPA recommends two levels of numeric standards, with an enhanced level of protection for waters inhabited by organisms especially sensitive to low dissolved oxygen levels. For a small subset of General Use waters—about 8% of the total General Use stream miles—Illinois EPA recommends a higher level of dissolved oxygen protection than proposed by IAWA. This higher level is intermediate between the "coldwater" criteria and "warmwater" criteria recommended in U.S. USEPA's national-criteria document. Some Illinois waters require dissolved oxygen levels higher than U.S. EPA's "warmwater" criteria because of the presence of a meaningful amount of fish

or macroinvertebrates that are more sensitive to low dissolved oxygen than the relatively few organisms on which U.S EPA's "warmwater" criteria are primarily based. 2) Illinois EPA recommends a narrative dissolved oxygen standard for waters that naturally cannot achieve consistently higher levels of dissolved oxygen, such as wetlands, sloughs, river backwaters, and portions of lakes and reservoirs below the thermocline.

3) Ilinois EPA recommends an annual period one month longer than that proposed by IAWA for the protection of sensitive life stages of fish. Namely, March through July rather than March through June.

4) Consistent with the U.S. EPA national-criteria document, Illinois EPA recommends a 30-day chronic dissolved oxygen standard in the form of a daily mean averaged over 30 days; this 30-day mean is not included in the IAWA proposal.

These recommendations are reflected in the language filed with the Board as Attachment 1 to the Pre-Filed testimony of Toby Frevert.

I participated in several aspects of the development of the Technical Support Document and joint Illinois EPA and Illinois DNR recommendations in this proceeding. Also, I am Illinois EPA's primary author for the joint Technical Support Document that was pre-filed with the Board with this testimony. In January 2006, I talked with Edward T. Rankin about his research on relations between stream fishes and dissolved oxygen in Ohio. We discussed how Illinois EPA and Illinois DNR were using his results to help identify Illinois fish species that are especially sensitive to low dissolved oxygen and thus potentially deserving of higher dissolved oxygen standards. I worked with Illinois EPA and Illinois DNR biologists and natural-resource managers to determine how to identify which streams in Illinois need higher minimum dissolved oxygen concentrations than those represented by the U.S. EPA "warmwater" criteria. After the two agencies co-developed an approach, Illinois DNR took the lead in identifying the Illinois streamfish and mussel species that are most sensitive to low dissolved oxygen. Illinois EPA led the effort to determine an analogous list of most-sensitive stream macroinvertebrates, excluding mussels. After the two agencies analyzed biological information to determine which stream sites had meaningful amounts of sensitive organisms, I extrapolated this site-specific information to identify the stream segments that require the higher recommended level of dissolved oxygen standards. I am available to answer questions about or to provide examples of this extrapolation process.

Illinois EPA and Illinois DNR collaborated extensively to develop the technical scientific basis and to perform the analyses that culminated in the joint recommended revisions to the dissolved oxygen standard. The experience and expertise of several Illinois natural-resource managers and biologists were invaluable to this process. In addition to Illinois DNR colleagues, the following Illinois EPA staff provided valuable technical input: Matt Short, Mark Joseph, Howard Essig, Gregg Good, Bob Mosher, and Toby Frevert. Matt Short is also available to answer questions about how the Illinois EPA macroinvertebrate information was used or about Illinois EPA's stream monitoring program, in general. In addition to relying on Illinois-based expertise, the Technical Support Document cites several published scientific books and papers; copies of the relvant portions of these works can be provided as necessary.

Illinois EPA believes that these recommendations to the Board are scientifically sound and defensible in light of the currently available information on the dissolved oxygen needs of aquatic life in Illinois. Inevitably, in the future, additional information will become available that will allow Illinois EPA to evaluate and possibly improve these current recommendations to the Board.

Finally, I would like to thank the Board for the opportunity to provide this pre-filed testimony and the accompanying Technical Support Document. Illinois EPA hopes this document sheds some light on the varied dissolved oxygen needs of Illinois aquatic life and helps the Board in its determination in this difficult proceeding. I will be happy to answer questions from the Board at the conclusion of the presentation of testimony from the Agency and the Department.

By: Kay SMOGOF

April 3, 2006

Illinois Environmental Protection Agency 1021 North Grand Avenue East P.O. Box 19276 Springfield, Illinois 62794-9276

RECEN CLERK'S OFFICE

BEFORE THE ILLINOIS POLLUTION CONTROL BOARD

APR 0 4 2006 STATE OF ILLINOIS Pollution Control Board

IN THE MATTER OF:

PROPOSED AMENDMENTS TO DISSOLVED OXYGEN STANDARD 35 ILL. ADM. CODE 302.206

R 04-25 (Rulemaking – Water)

PRE-FILED TESTIMONY OF JOEL CROSS

My name is Joel Cross and I have been employed by the Illinois Department of Natural Resources (Illinois DNR) for 7 and one half years. I am currently the Acting Manager of the Watershed Protection Section within the Office of Resource Conservation. The Watershed Protection Section has the responsibility of coordinating the implementation of the Illinois Wildlife Action Plan, statewide watershed-based scientific investigations, and Geographical Information Systems for the Office of Resource Conservation. I was formerly employed by the Illinois Environmental Protection Agency (Illinois EPA) for 19 years. During my last 9 years at the Illinois EPA, I was the Manager of the Surface Water Section and the Planning Section in the Division of Water Pollution Control. My duties included daily administration of several water resource programs including surface water monitoring and assessment, watershed management initiatives, federal non-point source programs, federal and state clean lakes programs, Total Maximum Daily Load (TMDL) development, Geographical Information Systems, and state water quality standards programs. I hold a Bachelor's degree in Zoology from Southern Illinois University at Carbondale, Illinois.

My testimony in this matter will include a general overview of the Illinois DNR's role, contribution and background history in developing the Illinois DNR and Illinois EPA joint recommendations for dissolved oxygen water quality standards. A jointly written Technical Support Document supplements the testimony provided by both Illinois DNR and Illinois EPA, and provides detailed information regarding the two agencies recommendations. I will refer to the Technical Support Document throughout my testimony.

Since the August 25, 2005 hearing, the Illinois DNR and Illinois EPA jointly developed a coordinated position that defines two levels of numeric standards for dissolved oxygen. A fundamental aspect of this position is that dissolved oxygen profiles naturally vary within general use waters throughout Illinois; therefore a single uniform standard is not appropriate given the available science today. Illinois DNR and Illinois EPA propose the establishment of two levels of numeric standards for dissolved oxygen for Illinois Pollution Control Board consideration: one level is generally protective of a full and diverse aquatic community (identified as level 2 in the Technical Support Document), and the other level sets incrementally higher dissolved oxygen concentrations to protect Illinois' most sensitive types of aquatic life (identified as level 1 in the Technical Support Document). The Illinois DNR became involved in this proceeding because State law provides that Illinois owns all aquatic life within our state boundaries and the Illinois DNR is specifically responsible for regulating and managing these natural resources.

Illinois DNR and Illinois EPA established a process for identifying a subset of waters that warrant an incrementally higher dissolved oxygen standard. A general description of this process follows. Our initial effort identified fish, macroinvertebrates, and mussels that are sensitive to dissolved oxygen. Next, Illinois DNR and Illinois EPA investigated fish and macroinvertebrate communities to determine four biological measures: number of sensitive fish species, proportion of individual fish that are sensitive, number of sensitive macroinvertebrate taxa, and the proportion of individual macroinvertebrates that are sensitive. Because the available mussel data did not comprise community assessments, number of sensitive species and proportion of sensitive individuals could not be calculated. The use of mussel data will be described later in my testimony. The third step in our process was to identify a threshold value for each of the four biological measures listed previously. Illinois DNR and Illinois EPA selected a threshold value that represented the typical amount known from healthy streams. Threshold values for each of the biological measures were determined by calculating the median value from sampling sites that were identified as attaining the Clean Water Act goal for aquatic life, referred to as full support. The calculation of the median was limited to full support waters in an attempt to limit the influence of environmental stresses, including habitat and chemicals. The fourth step of the joint process was to identify sites that had a meaningful amount of dissolved oxygen sensitive organisms. For each site, values for each of the four biological measures were compared

to established threshold values. Sites were selected as having a meaningful amount of sensitive organisms if at least two of the four biological measures considered equaled or exceeded the established threshold value.

We had sampling results from 1,110 locations available for our analysis and found that 374 of the total sampling sites were identified as candidates for enhanced dissolved oxygen protection. Detailed information regarding the methods and procedures, rationale, and supporting scientific literature used in the four-step process is provided in the Technical Support Document on pages 33 through 37. Having identified these 374 sampling sites in need of enhanced dissolved oxygen protection, extrapolation of these sites to stream segments was conducted. Detailed information regarding the methods, procedures, and rationale for the extrapolation to stream segments is provided in the Technical Support Document on pages 38 through 44.

As mentioned previously, the number of sensitive species and proportion of sensitive individuals could not be calculated for mussels because of limitations in sampling methods. However, the locations of two sensitive mussel species were overlain on the stream segments that were identified as needing an incrementally higher dissolved oxygen standard based on fish and macroinvertebrate analysis. In essence, the mussel data verified the effort to identify stream segments needing protection based on the fish and macroinvertebrate were selected for enhanced protection for dissolved oxygen based on the presence of these two dissolved oxygen

sensitive mussels. The list of stream segments, and the applicable dissolved oxygen standards recommended, is described in the draft regulations provided by Toby Frevert, Illinois EPA, pre-filed testimony attachment 1. To facilitate the Illinois Pollution Control Board and interested members of the public's review of identified stream segments in need of incrementally higher dissolved oxygen standards, the Illinois DNR provided geographically referenced data layers and associated software in compact disc format (CD).

In addition to recommending two levels of numeric standards for dissolved oxygen, the Illinois DNR and Illinois EPA are also recommending an additional 30-day period as a statewide date (July 31) for protecting early life stages of fish. This is in contrast to the Illinois Association of Wastewater Agencies (IAWA's) recommended date of June 30. The Illinois DNR believes that, based on the scientific literature presented in the Technical Support Document, an additional 30-day period is necessary to protect early life stages of fish. While the IAWA's proposed date of June 30 protects the majority of spring season spawns, it neglects to include the spawning period of the summer season spawns, and neglects to include a 30-day period for protection of post-hatch embryonic and yolk-sac fry development. In general, by July 31, all late spawning fish species will have a substantial majority of their spawning and fry development into dates when higher dissolved oxygen standards will be in effect. Even though some larvae will

be present into August, Illinois DNR fisheries managers believe the July 31 date should not be detrimental to the overall recruitment of a year class for fish species. A full discussion of the data supporting the selection of July 31 for protection of early life stages is provided in the Technical Support Document on pages 23 through 31.

The Illinois DNR and Illinois EPA developed these joint recommendations with input from stakeholder groups. Scheduled stakeholder meetings were held on October 19, 2005 in Chicago, and November 15, 2005 in Springfield. These meetings were attended by Illinois DNR, Illinois EPA, IAWA, Illinois Environmental Regulatory Group, Sierra Club, Prairie Rivers Network, USEPA, and Friends of the Chicago River. The Illinois DNR and Illinois EPA hosted additional meetings with IAWA on February 24, 2006 and with the Sierra Club and Prairie Rivers Network on March 1, 2006. The stakeholder process provided valuable input to the Illinois DNR and Illinois EPA in developing these recommendations for dissolved oxygen standards.

The Illinois DNR believes these joint recommendations provided through testimony and the Technical Support Document, significantly enhance protection for aquatic life in comparison to the dissolved oxygen standard currently in place. Specifically, these joint recommendations improve the current standard by identifying a season that protects for early life stages of fishes, providing dissolved oxygen standards more consistent with the USEPA National Criteria Document for Dissolved Oxygen

(1986), and attempting to account for the seasonal and natural variability of dissolved oxygen.

The Illinois DNR believes the two agencies recommendations build upon and enhances the proposed amendments to the current dissolved oxygen standards presented by IAWA by including two levels of numeric standards for protection of identified dissolved oxygen sensitive organisms in Illinois; a narrative standard for waters that naturally cannot achieve consistently higher levels of dissolved oxygen such as wetlands, sloughs, river backwaters, and lakes and reservoirs below the thermocline; the addition of the 30-day chronic standards consistent with the USEPA National Criteria Document applicable to both levels of numeric standards for dissolved oxygen; and an additional 30-day period necessary to protect early life stages of fish. The Illinois DNR does not view these joint recommendations as a lowering of dissolved oxygen standards within some waters during certain times of the year, but rather as focusing needed protection for most sensitive types and life stages of aquatic life where required. At the same time, the Illinois DNR and Illinois EPA recommendations are not unnecessarily over protective elsewhere. Therefore, the Illinois DNR further believes these joint recommendations will allow targeting of limited State resources to the most critical waters impacted by low dissolved oxygen concentrations.

Staff from the Illinois DNR has testified at both the August 12, 2004 and the August 25, 2005 hearings. Testimony for the August 25, 2005 hearing was pre-filed by

Dr. David L. Thomas, Chief of the Illinois Natural History Survey, on behalf of the Illinois DNR. During that hearing, Mr. Stanley Yonkauski, Illinois DNR attorney, moved to withdraw the Illinois DNR pre-filed testimony in order to allow the development of a joint position between Illinois DNR and Illinois EPA regarding dissolved oxygen standards (R 18-22). In addition, testimony was also provided by Dr. Thomas during the August 12, 2004 hearing. This Illinois DNR testimony, currently on the record, was provided in response to a June 24, 2004 letter from the Lieutenant Governor's Office regarding questions related to the dissolved oxygen issue (R 117-148, 155-158). Dr. Thomas' testimony was provided in the form of a response letter to the Lieutenant Governor's Office. The Illinois DNR testimony of August 12, 2004 identified two issues regarding dissolved oxygen that need to be referenced in context of the recommendations provided by the Illinois DNR and Illinois EPA today. Dr. Thomas stated that "the one-day minimum concentration of 3.5 milligrams per liter and the seven-day mean minimum of 4.0 milligrams per liter as not being conservative enough, and potentially endangering some aquatic life in the state." The 3.5 and 4.0 milligrams per liter dissolved oxygen standards proposed by IAWA are also, in part, contained in these joint recommendations provided by Illinois DNR and Illinois EPA. The Illinois DNR believes these joint recommendations address Dr. Thomas' concern expressed in previous Illinois DNR testimony by the addition of two levels of numeric standards (described in the Technical Support Document on pages 1 through 4). In these joint recommendations, the one-day minimum

concentration of 3.5 milligram per liter and the seven-day mean minimum of 4.0 milligrams per liter are applicable only to juvenile and adult life stages within level 2 waters. Applicable dissolved oxygen standards for juvenile and adult life stages in level 1 waters and for early life stages within both level 1 and 2 waters are incrementally higher. The second issue stated in previous Illinois DNR testimony identifies the need to maintain a 5.0 milligrams per liter minimum at all times, which is consistent with the existing dissolved oxygen standards. Dr. Thomas further stated "that there are species that probably would not be protected at lower levels." In developing these joint recommendations, Illinois DNR and Illinois EPA investigated extensively dissolved oxygen sensitivity to fish, macroinvertebrates, and mussels during various life stages (described in the Technical Support Document on pages 10 through 22). Based on this further scientific analysis, a 5.0 milligram per liter acute dissolved oxygen standard is only necessary for protection of early life stages within level 1 and 2 waters. For juvenile and adult life stages, protective acute dissolved oxygen standards include 4.0 milligrams per liter for level 1 waters and 3.5 milligrams per liter for level 2 waters.

At this point, I would like to thank the Illinois Pollution Control Board for providing the Illinois DNR and Illinois EPA additional time to develop a joint position in this matter as well as all those people who fully participated in the stakeholder process. Illinois DNR staff making significant contributions to this process includes Scott Stuewe, Ann Holtrop, Dr. David L. Thomas, Dr. Kevin Cummings, Jim Mick, Mike Conlin and Illinois DNR

Deputy Director Leslie Sgro. Staff from Illinois EPA spent countless hours working directly with the Illinois DNR, including Toby Frevert, Roy Smogor, Matt Short, Mark Joseph, Gregg Good, Bob Mosher, Stefanie Diers, Deborah Williams, and Marcia Willhite. From the Sierra Club and Prairie Rivers Network, I'd like to thank Albert Ettinger, Cindy Skrukrud, and Glynnis Collins. Finally, I'd like to thank IAWA, including Dennis Streicher, Roy Harsh and Dr. James Garvey from Southern Illinois University.

In addition to myself, other Illinois DNR staff are here today and can be called upon to address specific questions related to the Technical Support Document as needed. Scott Stuewe, Acting Chief for the Division of Fisheries, can address questions related to biological data and information. Ann Holtrop, Watershed Protection Section, can address questions related to the overall process used to determine waters that warrant a higher dissolved oxygen standard.

Cross

By Joel Cross, Acting Manager Watershed Protection Section Office of Resource Conservation

March 31, 2006 Joel Cross Illinois Department of Natural Resources One Natural Resources Way Springfield, IL. 62702

Section 302. APPENDIX D: Stream Segments for Enhanced Dissolved Oxygen Protection

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
Illinois			-	
Aux Sahla Creak				
220				
437	start	41 3982125891033	-88 3307365155966	GRUNDY
	end	41.5221610266554	-88.3153074461322	KENDALL
Baker Creek			•	
123				
	start	41.0993159446094	-87.833779044559	KANKAKEE
	end	41.1187483257075	-87.7916507082604	KANKAKEE
Baptist Creek				
- 160				
	start	40.5172643895406	-90.9781701980636	HANCOCK
	end	40.5217773790395	-90.9703232423026	HANCOCK
Barker Creek				
170				
	start	40.4730175690641	-90.3623822544051	FULTON
Dutil Curre	end	40.4505102531327	-90.423098300893	FULTON
Вате Стеек				
190	-	41 701467277256	99 6440656100122	DEVAID
	end	41.791407572550	-88 6580317835588	DEKALB
Ria Ruroau Crook	onu	41.0454455074014	00.0000011000000	DERCED
200				
207	start	41.2403303426443	-89.3778305139628	BUREAU
	end	41.6599418992971	-89.0880711727354	LEE
Big Rock Creek				
275				
	start	41.6325949399571	-88.5379727020413	KENDALL
	end	41.7542831812644	-88.5621629654129	KANE
Blackberry Creek				
271				
	start	41.6432480686252	-88.451129393594	KENDALL
	end	41.7663693677829	-88.3855968808499	KANE
Boone Creek				
284		40 2420701909007	00 7501616156001	MCUENDV
	start	42.3430701828297	-88.20040404040881	MCHENRY
Ruck Creak	enu	42.5110015120772	-00.5204045557750	MICHIELORI
DUCK CIEEK				
# # J	start	41.4305449377211	-88.7732713228626	LASALLE
	end	41.4508806057478	-88.919966063547	LASALLE
403				
	start	40.6513984442885	-88.8660496976016	MCLEAN
	end	40.6757825960266	-88.8490439132056	MCLEAN
Camp Creek				
116				
	start	41.0119168530464	-89.7317034650143	STARK
	end	41.0202988179758	-89.6817209218761	STARK

March 31, 2006

Page 1 of 37

ASIN NAME				
Segment Name				
Segment No. End Points	-	Latitude	Longitude	COUNTY
168	start	40.2936155016035	-90.7791785207262	MCDONOUGH
Camp Run	ena	40.3985161419285	-90.5089905510752	MCDONOUGH
115				
	start end	41.0119168530464 41.0575944852479	-89.7317034650143 -89.6822685234528	STARK STARK
Cantway Slough 250				
	start end	41.1654521279715 41.1204910206261	-87.6179423055771 -87.6018847740212	KANKAKEE KANKAKEE
Cedar Creek				
164	stort	40 4197024502046	-01.0110240544251	HANCOCK
	end	40.4320989747514	-90.9816512014458	HANCOCK
Central Ditch				
17	start	40.2466345144431	-89.8605138200519	MASON
Clear Creek	end	40.259146892407	-89.8331744969958	MASON
· 70	etart	40 2358631766436	-89 1715114085864	LOGAN
	end	40.2817523596784	-89.2105606026356	MCLEAN
Coal Creek				
175	start	40.6458316286298	-90.2773695191768	FULTON
Collins Run	end	40.6911917975894	-90.0990104026141	FULTON
243				
	start end	41.4219631544372	-88.3508108111242 -88.3955434158999	GRUNDY GRUNDY
Conover Branch	ona	11.11.200020.222		
184	otort	30 8376003457408	-90 1465720267561	MORGAN
	end	39.8696939232648	-90.1234898871846	MORGAN
Coon Creek				
υv	start	40.1076562155273	-89.0130117597621	DEWITT
Coop Branch	end	40.1755351290733	-88.885/086/15202	DEWILL
31				
	end end	39.2042878811665 39.1194481626997	-90.0972130791043 -89.9878509202749	MACOUPIN MACOUPIN
Coopers Defeat C	reek			
114	start	41,1557502062867	-89.748162019475	STARK
	end	41.1485959333575	-89.6944246708098	STARK
Copperas Creek 88				
00	start	40.4856512052475	-89.8867983078194	FULTON
Court Creek	end	40.549513691198	-89.901190/11/391	ruliun
122				

.

March 31, 2006

......

Page 2 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	40.9184191403691	-90.1108008628507	KNOX
	end	40.9349919352638	-90.2673514797552	KNOX
Cox Creek				
177		10 000 1 60 10 10 1 60	00 1150700774046	C 1 66
	start	40.02316/4243157	-90.1158/80//4240	CASS
Curry o Currols	ena	39.9037937003914	-90.0180044049331	CASS
Crune Creek				
1/4	start	40 1328714038267	-89 9709414534257	MENARD
	end	40.2466345144431	-89.8605138200519	MASON
Crow Creek				
102				
	start	40.9323207251964	-89.4264477600798	MARSHALL
	end	40.9663161180876	-89.2558617294218	MARSHALL
Deer Creek		<u>.</u>		
59			00 000101000/00/	100431
	start	40.117679723776	-89.3801215076251	LOGAN
D. Distance Discourse	ena	40.1915002027115	-69.1362023770636	LUGAN
Des Plaines Kiver				
245	start	41 3923135096469	-88 2590124225285	GRUNDY
	end	41.4325013563553	-88.1725611633353	WILL
Dickerson Slough				
421				
	start	40.3597968706068	-88.3225685158141	CHAMPAIGN
	end	40.4568389800294	-88.3442742579475	FORD
Drummer Creek				
423				
	start	40.37389931547	-88.3480/53423380	CHAMPAIGN
Dm Fork	ena	40.479101409999	-08.300070407000	TOID
Dry Fork 25				
35	start	39 1989703827155	-89.9609795725648	MACOUPIN
	end	39.1445756951412	-89.8876581181152	MACOUPIN
Du Page River				
268				
	start	41.4988385272507	-88.2166248594859	WILL
	end	41.7019525201778	-88.1476209409341	WILL
Eagle Creek				
392	-44	41 12/0015410764	00 050050500/771	TAGATIE
	start	41.1300013419704	-88 8664977236647	LASALLE
Fast Aux Sable Cr	ook	41.12/11/2042402	-00.0004977200017	
240	cun			
240	start	41.5221610266554	-88.3153074461322	KENDALL
	end	41.6231669397764	-88.2938779285952	KENDALL
East Branch Big K	Rock	Creek		
277				
	start	41.7542830239271	-88.5621632556731	KANE
	end	41.8161922949561	-88.6002917634599	KANE
East Branch Copp	eras	Creek		
47		40 640614622600	90 001 1 900022 51	ELII TON
	start	40.349314032309	-07.901109903331	TULIUN

Page 3 of 37

March 31, 2006

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	end	40.6583152735498	-89.8516717710553	PEORIA
East Fork La Mo	ine Ri	ver		
167				
	start	40.3962156185095	-90.9339386121768	HANCOCK
	end	40.4506930058171	-90.758703782814	MCDONOUGH
East Fork Mazon 256	River			
	start	41.1872307009926	-88.2731640461448	GRUNDY
	end	41.0815161304671	-88.3093601699244	LIVINGSTON
East Fork Spoon	River			
110				
	start	41.2158736312898	-89.6870256054763	STARK
	end	41.2603216291895	-89.7311074496692	BUREAU
Easterbrook Drai	n			
410		40.2607020740000		
	start	40.3687232740908	-88.5787269955356	MCLEAN MCLEAN
Exlina Slough	ena	40.3303243273073	-00.3404031300330	MCLEAN
Exine Stougn				
232	start	41 1187483257075	-87 7916507082604	KANKAKEE
	end	41.3377194296138	-87.674538578544	WILL
Fargo Run				
94				
	start	40.8110626738718	-89.7625906815013	PEORIA
	end	40.7936211492847	-89.7147157689809	PEORIA
Ferson Creek				
281				
	start	41.9275380999085	-88.3177738518806	KANE
	end	41.9518312998438	-88.3965138071814	KANE
Fitch Creek				
131		41 000000 (01000	00.00000000000000	10100
	start	41.0629/324215/9	-89.9929808862433	KNOX
Forkad Creak	ciiù	41.1048403021013	-90.01/12/5/20119	NINOA
265				
200	start	41.312634893655	-88,1518349597477	WILL
	end	41.4208599921871	-87.8221168060732	WILL
Forman Creek				
129				
	start	41.0920068762041	-90.1229512077171	KNOX
-	end	41.061779692349	-90.1373931430424	KNOX
Fourmile Grove (Creek		•	
232				
	start	41.5880621752377	-89.0154533767497	LASALLE
For Creak	end	41.0281372005102	-89.0480030727754	LEE
FOX Creek				
121	ctort	41 2158736312808	-80 6870256054763	STADY
	end	41.2178841576744	-89.6378797955943	BUREAU
Fox River				Sound
270				
	start	41.6177003859476	-88.5558384703467	KENDALL
	end	41.7665361019038	-88.3100243828453	KANE
• · · · · · · · · · · · · · · · · · · ·				

.

Page 4 of 37

•

ι.

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
Friends Creek				
56				
	start	39.9296881580789	-88.7753341828841	MACON
	end	40.0511150621524	-88.756810733868	MACON
Furrer Ditch				
175		40.05014(000407	00 0221744007105	MASON
	start	40.259146892407	-89.8331/4480/193	MASON
Goosaharm Craak	CIIC	40.200800202248	-07.02333333700003	MADOIN
138				
150	start	41.0815161304671	-88.3093601699244	LIVINGSTON
	end	41.0229178273291	-88.3433997610298	LIVINGSTON
181				
	start	41.2273512263311	-88.3737634512576	GRUNDY
~·· ~ -	end	41.1567969821084	-88.3954921510714	GRUNDY
Grindstone Creek				
169	_+ ·	40 2026166016026	00 7701795207252	MCDONOLICH
	start	40.2930133016035	-90.7791785207202	MCDONOUGH
Hall Ditch	enu	TV.J120771202700		MODOITOOGIA
176				
110	start	40.214043063866	-89.8947856138658	MASON
	end	40.1996396083582	-89.8430392085184	MASON
Hallock Creek				
101				
	start	40.9330251540704	-89.523027406387	PEORIA
	end	40.9162496002415	-89.5368879858621	PEORIA
Haw Creek				
125		10 0575773961963	00 2225001570552	KNOY
	stan	40.8575772801802	-90.3387634753254	KNOX
Henline Creek	ond	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	20,220,00,100,100,20T	
401				
	start	40.5867014223785	-88.6971328093932	MCLEAN
	end	40.6247936449316	-88.6315733675586	MCLEAN
Henry Creek				
100			~~	NFORM.
	start	40.932455717876	-89.5256512687818	PEORIA
Hammon Creak	end	40.9472322228041	-89.5/1142/004422	FOURIA
nermon Creek				
120	start	40 7818347201379	-90 2738699961108	KNOX
	end	40.7628476930817	-90.3372052339614	KNOX
Hickorv Creek				
244				
	start	41.5038289458964	-88.0990240076033	WILL
	end	41.4935392717868	-87.8108342251738	WILL
Hickory Grove Dit	tch			
87				
	start	40.4870721779667	-89.7285827911466	TAZEWELL
TC.L	end	40.4130575035069	-89./34930/038/80	INIYOUA
nickory Kun				

.

93 March 31, 2006

Page 5 of 37

Segment Name				
Segment No.		T (') T.	T en eite de	COLNITY
End Points				DEODIA
	start	40.8217198390551	-89.7449749384213	PEORIA
TTULL CLARK	епа	40.6561447502591	-09.7022130910015	TEORIA
Huisbury Stougn				
410	- 4 4	40 2462052429271	88 2025200070523	CHAMPAIGN
	start	40.3433933436371	-88 2265028280313	CHAMPAIGN
Hodges Creak	Cild	40.3720002370013	00.220302000015	
Houges Creek				
34	start	39 2630316914552	-90.1858200381692	GREENE
	end	39.2801974743086	-90.1528766403572	GREENE
Hurricane Creek				
44				
••	start	39.449376470161	-90.5400508230403	GREENE
	end	39.4781872332274	-90.4508986197452	GREENE
Illinois River				
236				
	start	41.3255740245957	-88.9910230492306	LASALLE
	end	41.3986780470527	-88.2686499362959	GRUNDY
Indian Creek				
120				
	start	40.988610901184	-89.8221496834014	STARK
	end	41.2003389912185	-89.9349435285117	HENRY
182		20.0705447641605	00 3783080060640	C 4 5 5
	start	39.8/8344/041003	-90.5782080939349	MORGAN
224	enu	39.0234731004742	-90.103743390331	MOROAN
224	etart	41 7480730242898	-88 8741562924388	DEKALB
	end	41.7083887626958	-88.9437996894049	LEE
226	•			
	start	41.4400734113231	-88.7627018786422	LASALLE
	end	41.7377348577433	-88.8557728844589	DEKALB
396				
	start	40.7701181840118	-88.4858209632899	LIVINGSTON
	end	40.6469799222669	-88.4812665778082	LIVINGSTON
Iroquois River				
253				
	start	41.0739205590002	-87.8152251833303	KANKAKEE
447	end	40.9614905075375	-87.8149010739444	IKOQUOIS
44 /	ctort	40 7817769095357	-87 7532807121524	IROOUOIS
	end	40.8174648935578	-87.5342555764515	IROOUOIS
Jack Crook	Und			
100			•	
107	start	41.1283656948767	-89.7699479168181	STARK
	end	41.150467875432	-89.8374616586589	STARK
Jackson Creek				
246				
	start	41.4325013563553	-88.1725611633353	WILL
	end	41.4638503957577	-87.9160301224816	WILL
Joes Creek				
33				
	start	39.2801974743086	-90.1528766403572	GREENE
	end	39.3757180969001	-90.0772968234561	MACOUPIN
14 1 21 2007				

BASIN NAME

Page 6 of 37

BASIN NAME				
Segment Name				
Segment No.		· · · ·	• · · ·	
End Points		Latitude	Longitude	COUNTY
Johnny Run				
258		41 2826700070541	88 3633805810326	GRUNDY
	end	41.0807507198308	-88.5801638050665	LIVINGSTON
Jordan Creek				
266				
	start	41.3044458242397	-88.1279087273328	WILL
	end	41.3077177643453	-88.1188984685001	WILL
Judd Creek				
100	start	41.089645284216	-89.1847595119809	MARSHALL
	end	41.0429807674449	-89.1339049242164	MARSHALL
Kankakee River				
248				ONDIN
	start	41.3923135096469	-88.2590124225285	GRUNDY
Kickanao Creek	çnu	41.1000752508715	-07.920900971907	
57				
-	start	39.9932216924528	-88.8083252484687	MACON .
	end	39.9987405799186	-88.8205170598483	MACON
65	atant	40 1286520401088	-80 4532728067436	LOGAN
	end	40.4376592310728	-88.8667409562596	MCLEAN
92				
	start	40.6548826785105	-89.6134608723157	TAZEWELL
	end	40.9170471944911	-89.6577393908301	PEORIA
Aings Mill Creek				
03	start	40.4558745105979	-89.1642930044364	MCLEAN
	end	40.509184986927	-89.0937965002854	MCLEAN
La Harpe Creek				
159			01 0404167407570	NANCOCK
	start	40.4678428297867	-91.042410/49/5/2	HANCOCK
La Moine River	Cilu	40.5172045055400	-90.9701701900000	
158				
	start	40.3320849972693	-90.8997234923388	MCDONOUGH
	end	40.5923258750258	-91.0177293656635	HANCOCK
Lake Fork				
01	start	40.0837107988142	-89.3969397975165	LOGAN
	end	39.9367293000733	-89.2343282851812	LOGAN
Langan Creek				
254				20001010
	start	40.9614905075375	-87.8149010739444	IROQUOIS
Lime Crook	CUU	40.74 <i>34</i> 0100704//	-00.0703330327100	
214				
	start	41.4515003790233	-89.5271752648714	BUREAU
	end	41.4951141474998	-89.456554884734	BUREAU
Little Indian Creek				
183	ctart	30 8355064564577	-90 1231971747256	MORGAN
NA 1 21 2004	SIGIL	J710JJJ704J04J22	-20.1631271147630	

Page 7 of 37

March 31, 2006

Segment Name Segment No. COUNTY End Points Latitude Longitude -90.0423591294145 MORGAN end 39.8658175367056 227 LASALLE start 41.5091299863247 -88.7725444056074 end 41.749433980972 -88.8141442269697 DEKALB Little Kickapoo Creek 67 -88.9736094275975 **MCLEAN** start 40.3336625070255 **MCLEAN** end 40.394785197415 -88.9473142490326 Little Mackinaw River 82 TAZEWELL start 40.4423190352496 -89.4617848276975 end 40.4481261917524 -89.4329939054056 TAZEWELL Little Rock Creek 274 -88.5384723455853 **KENDALL** start 41.6345548769785 -88.6981590581244 DEKALB end 41.7895688619816 Little Sandy Creek 107 MARSHALL start 41.0912632622075 -89.2247552498617 PUTNAM end 41.125352501365 -89.1758716886846 Little Senachwine Creek 99 -89.5292433956921 PEORIA start 40.9533145540839 -89.5499765139822 MARSHALL end 41.0084439145565 Little Vermilion River 233 -89.0811945323001 LASALLE start 41.3237602050852 -89.0829047126545 LASALLE end 41.5760289435671 Lone Tree Creek 418 CHAMPAIGN start 40.3750682121535 -88.3819688457729 MCLEAN end 40.3145980401842 -88.4738655755984 Long Creek 163 -91.0499607552846 HANCOCK start 40.4466427913955 -91.1507109600489 HANCOCK end 40.4297652043359 Long Point Creek 68 DEWITT start 40.2755311999445 -89.0786438507327 DEWITT end 40.2549604211821 -88.9826285651361 394 -88.7908409579793 . LIVINGSTON start 41.038177645276 LIVINGSTON end 41.0018214714974 -88.8534349418926 Mackinaw River 397 start 40.5796794158534 -89.2813445945626 TAZEWELL end 40.5649627479232 -88.478822725546 MCLEAN Macoupin Creek 32 start 39.1989703827155 -89.9609795725648 MACOUPIN JERSEY start 39.2121253451487 -90.2312084410337

Madden Creek 413 March 31, 2006

BASIN NAME

Page 8 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	40.0943580002069	-88.5400649488702	PIATT
	end	40.2109635906658	-88.4943738561926	PIATT
Masters Creek				
220		41 407(10020222)	00 4105470 (0707)	DUDEAU
	start	41.49/0109383330	-89.41254/300/0/0	BUREAU
Mastars Fork	chu	41.040900049545	-07.421700572750	Delene
717				
21,	start	41.4531024225454	-89.4290492805799	BUREAU
	end	41.5702310455498	-89.3821188149649	BUREAU
Mazon River				
257				_
	start	41.3086768327676	-88.3389845675056	GRUNDY
Marker Carl	end	41.18/230/009926	-88.2/31640461448	GRUNDY
Menaota Creek				
234	etart	41 5281666288805	-89 1041764154672	LASALLE
	end	41.5282367334928	-89.1224368860589	LASALLE
Middle Branch of	Сорр	eras Creek		
90				
	start	40.549514632509	-89.901189903351	FULTON
	end	40.5980896362772	-89.9368482699851	FULTON
Middle Creek				
165				II INCOOR
	start	40.3957329294144	-90.9741776721721	HANCOCK
Mill Creak	ena	40.2666694020320	-91.00/2302/3/300	HANCOCK
Mui Creek				
777	start	41.8213649020421	-88.3222376599138	KANE
	end	41.9231053361497	-88.4419826012614	KANE
Mole Creek				
390				
	start	41.0193910577853	-88.8019375580673	LIVINGSTON
	end	40.9109452909954	-88.9263176124884	LIVINGSTON
Morgan Creek				
272	_44	41 6491170046260	00 4151120300020	VENDALI
	start	41.04811/2040309	-88.4151106506609	KENDALL
Mud Creek	ciid	41.0350511243052		
449				
	start	40.637099482441	-87.5885960450541	IROQUOIS
	end	40.6100172186722	-87.5261312404789	IROQUOIS
Mud Run				
117				
	start	41.0092425694765	-89.7790957399812	STARK
	end	40.9876287937001	-89.6785472090663	STAKK
Murray Slough				
259	ctart	11 2128815125080	-88 3615508333781	GRUNDV
	end	41.054741775769	-88.5825975362008	LIVINGSTON
Nettle Creek	ong		00.002000000000000000000000000000000000	
237				
	start	41.3559056532822	-88.4326806825019	GRUNDY
March 31, 2006				

Page 9 of 37

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	end	41.3989525138118	-88.5519708865374	GRUNDY
Nippersink Creek				
285			00 100 10 (0 00 00 00 1 6	
	start	42.403479031235	-88.1904263022916	LAKE
280	ena	42.406521500909	-00.341299199739	MUCHLINKI
207	start	42.3885864249526	-88.3641081665149	MCHENRY
	end	42.4692291197455	-88.4764236384547	MCHENRY
North Branch Cro	w Cre	eek		
103				
	start	40.9663161180876	-89.2558617294218	MARSHALL
	end	41.0005549578781	-89.1943061363378	MARSHALL
North Branch Nip	persi	nk Creek		
286	atomt	41 4276621550070	ee 2072504217520	MCHENRY
	end	42.4370032333979	-88.3294075716268	MCHENRY
North Creek	QIIG	12.19 19000799007		
119				
	start	40.9486975483619	-89.7633680090807	PEORIA
	end	40.9421533616142	-89.7281078793964	PEORIA
North Fork Lake	Fork			
62			00 00 40000051010	100411
	start	39.9367293000733	-89.2343282851812	LUGAN
North Fork Salt (uno k	40.0323211363442	-07.0777505242014	DEWITT
norin Fork Suit C	reen			
/1	start	40.2675598120912	-88.7867164044023	DEWITT
	end	40.3620541452609	-88.7204600533309	MCLEAN
Otter Creek				
171				
	start	40.2161621556914	-90.164317977292	FULTON
270	end	40.3182822717998	-90.3800009923348	FULTON
219	start	41 9619670384069	-88.3574449893747	KANE
	end	41.9903303640688	-88.3568570687618	KANE
393				
	start	41.1611802253124	-88.8310854379729	LASALLE
	end	41.1541/34588026	-88./14855004/115	LASALLE
Paniner Creek				
1/0	start	40.0231674243157	-90.1158780774246	CASS
	end	39.9411115612757	-90.0607356525317	ÇASS
405				
	start	40.6607941387838	-89.196034413193	WOODFORD
	end	40.8483817762616	-89.0003562591212	WOODFORD
Paw Paw Run				
231	-	41 6177046975707	00 001770126070 7	TASATIE
	start end	41.6630271288718	-88,9144064528509	DEKALB
Pike Creek	QUIQ.	11.00002/1200/10		
216				
210	start	41.5121637096396	-89.3366888940457	BUREAU
	end	41.5707857354427	-89.2125163729316	BUREAU
March 31, 2006				

.

Page 10 of 37

BASIN NAME

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
388				
	start	40.8655185113965	-88.7090974772719	LIVINGSTON
	end	40.7989226101833	-88.7756316859923	LIVINGSTON
Pond Creek				
212				
	start	41.3494925800361	-89.5685244208084	BUREAU
	end	41.3541221673156	-89.6001721270724	BUREAU
Poplar Creek				
493	atont	43 0137803043000	00 1700170150546	VANE
	start	42.0127893042098	-88.151517184544	COOK
Prairie Creek	chu	+2.000+08268+0++	-00.10101710-044	COOK
60				
0)	start	40.2688606116755	-89.1209318708141	DEWITT
	end	40.3183618654781	-89.1150133167993	MCLEAN
79				
	start	40.1610672222447	-89.6159697428554	MASON
	end	40.3105388304102	-89.4819788351989	LOGAN
264			00 10 000 (0 1 (0 407	
	start	41.3410818305214	-88.1859963163497	WILL
301	ena	41.4048430210988	-87.9030949110331	WILL
371	start	41.0691920852358	-88.8106812576958	LIVINGSTON
	end	41.0162806406811	-89.0122375626521	LASALLE
Prairie Creek Dit	ch			
81				
	start	40.242940205103	-89.5831738921535	LOGAN
	end	40.268603376062	-89.5902703680441	LOGAN
Prince Run				
118				
	start	40.9953442805941	-89.7634490486344	STARK
Dal Day Creak	ena	40.94809/5485019	-89.7033080090807	PEORIA
KOD KOY Creek				
495	start	41 6340658591268	-88 530902327864	KENDALL
	end	41.7208669225124	-88.4449822691918	KENDALL
Rock Creek				
180				
	start	39.9533586794244	-89.7717217346798	MENARD
	end	39.9192042890665	-89.881417605895	MENARD
251				
	start	41.2029705333006	-87.9860450524621	KANKAKEE
De alas Deres	ena	41.2410/33083013	-87.9199539052218	KANKAKEE
KOCKY KUN 221				
<i>44</i> 1	etart	41 2966432755716	-89.5031050607007	BUREAU
	end	41.2892114895079	-89.5271301009319	BUREAU
Rooks Creek	-114			
386				
	start	40.9620056243899	-88.737743684525	LIVINGSTON
	end	40.7615433072922	-88.6752675977812	LIVINGSTON
Salt Creek				

Page 11 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	40.1286520491088	-89.4532728967436	LOGAN
	end	40.1404369482862	-88.8817439726269	DEWITT
409	-44	10 0702661001000	00 20103 40302105	DEWITT
	start	40.2793033821328	-88.5787269955356	MCLEAN
Sandy Crook	cito	40.3007232740700	-00.570720755550	MOLLING
105				
	start	41.1083947129797	-89.3471796913242	PUTNAM
	end	41.0855613697751	-89.0792291942694	MARSHALL
Sangamon River 408				
	start	40.0056362283258	-88.6286241506431	PIATT
	end	40.4223231153926	-88.67328493366	MCLEAN
Senachwine Cree 96	ĸ		00 4630000486071	RECRIA
	start	40.929825800388	-89.40329284802/1	MARSHALL
Shart Creek	ciid	41.0900518754950	-07.9009194170247	MAROIMED
162				
	start	40.4611057719393	-91.0582083107674	HANCOCK
	end	40.4682735975769	-91.0704506789577	HANCOCK
Short Point Creek	c			
389		40.000000000000000000000000000000000000	00 00000000000	
	start	40.9883827214271	-88.7830008923003	LIVINGSTON
Silvar Crack	chu	40.8991901079701	-00.0749997200932	LIVINGSION
111				
111	start	41.2185762138697	-89.6793069447094	STARK
	end	41.2431713087936	-89.6494927441058	BUREAU
South Branch Cr	ow Cr	eek		
104				
	start	40.9663161180876	-89.2558617294218	MARSHALL
South Dranch Fo	ena whad (40.9410073146431	-69.1946265505651	MARSHALL
South Brunch Fo	rneu (reen		
201	start	41.2631372965881	-88.0315238211836	WILL
	end	41.292604367733	-87.9621751169561	KANKAKEE
South Fork Lake 63	Fork			
	start	39.9367293000733	-89.2343282851812	LOGAN
	end	39.9674631778105	-89.0884701339793	MACON
South Fork Verm 395	uion 1	40.7701101040110	00 4050000000000	
	start	40.7701161640116	-88.4638209032899	LIVINGSTON
Snoon River	chu		00000 1 /	2111100101
3				
~	start	40.883272448156	-90.0994555125119	KNOX
	end	41.2158736312898	-89.6870256054763	STARK
Spring Creek 161				
	start	40.5838583294631	-91.0397056763892	HANCOCK
	end	40.595079516268	-91.0572149428165	HANCOCK
16				

Page 12 of 37

BASIN NAME Segment Name				
Segment No. End Points		Latitude	Longitude	COUNTY
166	start	40.4506930058171	-90.758703782814	MCDONOUGH
223	end	40.5047702003096	-90.7202911238868	MCDONOUGH
Stevens Creek	end	41.5341774964794	-89.1599030581214	LASALLE
55	start	39.833172054334	-89.008501860042	MACON
~ ~ .	end	39.8725126750168	-88.9902570309468	MACON
Sugar Creek 76	ctort	40 1505000040415	-80 6335230006087	MENARD
124	end	40.3515916252906	-89.1626966142058	MCLEAN
	start end	40.9273148603695 40.9407150872189	-90.1168866799652 -90.126984172004	KNOX KNOX
448	start end	40.7817769095357 40.650106664471	-87.7532807121524 -87.5259225515566	IROQUOIS IROQUOIS
Sutphens Run 228			00.010/01/01000/0	
Swah Run	start end	41.5940767755281	-88.9196815109252 -89.0434408697488	LASALLE LASALLE
127	start	40.8043825531334	-90.0417502151246	KNOX
Tenmile Creek	end	40.8089204046364	-89.9959890937906	KNOX
64	start end	40.1166122038468 40.1573804135529	-89.0605809659338 -88.9870426654374	DEWITT DEWITT
Timber Creek 77				
.	start end	40.3499903738803 40.3824906556377	-89.1633832938062 -89.0653243216353	MCLEAN MCLEAN
Trim Creek 249	etart	41 1679695055755	-87 6275919071884	KANKAKEE
Turkey Creek	end	41.3235679470585	-87.6273348723156	WILL
172	start	40.5312633037562	-90.2784734138591	FULTON
402	end	40.6100168551688	-90.1683886238592	MCLEAN
Tvler Creek	end	40.6636296144043	-88.7848217949076	MCLEAN
283	start	42.057069434075	-88.2869209701875	KANE
Unnamed Tributa	end <i>try</i>	42.0886074301339	-88.3939734393445	KANE
230				

Page 13 of 37
l

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	41.6008353940091	-88.9239309686064	LASALLE
	end	41.6393800996109	-88.95237726256	LEE
406				
	start	40.8483817762616	-89.0003562591212	WOODFORD
	end	40.8446321845668	-88.9879480330159	WOODFORD
Unnamed Tribute	ary of .	Big Bureau Creek		
222				
	start	41.2923889187328	-89.4849627504116	BUREAU
	end	41.2746773653832	-89.4967232161933	BUREAU
Unnamed Tribute	ary of	Coopers Defeat Cr	reek	
113				
	start	41.1485959333575	-89.6944246708098	STARK
	end	41.1432423938169	-89.6549152326434	STARK
Unnamed Tribute	ary of 1	Dickerson Slough		
422			· · · · · · · · · · · · · · · · · · ·	
	start	40.4068214049304	-88.3388760698826	FORD
	end	40.4286849455119	-88.3118606581845	FORD
Unnamed Tribute	ary of 1	Drummer Creek		
425				
	start	40.430183509928	-88.3944923485681	FORD
	end	40.4228198536222	-88.4420280012069	FORD
Unnamed Tribute	ary of .	East Branch of Co	pperas Creek	
89				DECEL
	start	40.59257130763	-89.8385498955685	PEORIA
	start	40.59257130763	-89.8385498955085	PEORIA
Unnamed Tribut	ary of .	East Fork of Spoo	n River	
112			~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~ ~~	
	start	41.1911731339471	-89.0948993/30812	STARK
	ena	41.1958///400981	-89.0033132189332	STARK
Unnamed Tribute	ary of .	Indian Creek		
185		~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	00 00100/007071	MORCAN
	start	39.8195431621523	-90.231200997871	MORGAN
220	ena	39.7997709298014	-90.2444090090022	MORGAN
229	-to-st	41 5000641046971	88 012205513256	LASALLE
	start	41.59890412408/1	-88.913293313230	LASALLE
T		Hillson Creak	-00.7771274521447	LAGALLE
Unnamea Iribui	ury oj .	Juckson Creek		
247	atort	41 4228712205604	-88 0777040404827	WILL
	end	41.4328713233004	-88.0389954976751	WILL
Ilunamod Tribut	any of	Tohnny Run		
<i>Unnumeu 1110</i> 41	ury of a	Jonnny Kun		
201	ctart	41 1315090714299	-88 5704499691513	GRUNDY
	end	41.1515050714255	-88.5813177275807	GRUNDY
Unnamed Tribut	ary of	Kickanoo Creek		
CHMUMEU 1110411 66	y 0j.	annapoo creen		
00	stort	40 4376592310728	-88 8667409562596	MCLEAN
	stari end	40.4570592510720	-88 7941853627565	MCLEAN
05	CIIU	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	0011211000021000	
75	start	40.843847234267	-89.6598940056171	PEORIA
	end	40.8376970553513	-89.655765678658	PEORIA
urch 31 2006	0110			-
#1011 3 23 #0000				

Page 14 of 37

	Latitude	Longitude	COUNTY
arv of l	Lone Tree Creek		
00			
start	40.3145980401842	-88.4738655755984	MCLEAN
end	40.3084681821929	-88.4721825603404	MCLEAN
start	40.3200878690807	-88.4758169784284	MCLEAN
end	40.3246054213609	-88.502979969789	MULEAN
atort	40 2555055029911	88 1186860730731	CHAMPAIGN
end	40.3553786361326	-88 4890287857383	MCLEAN
arv of	Mackinaw River	00.1090201097905	
ury 0j 1	Machinary Mirci		
start	40 5649627479232	-88.478822725546	MCLEAN
end	40.4956570103387	-88.5106552787079	MCLEAN
start	40.558742486097	-88.5447290418444	MCLEAN
end	40.532461937187	-88.5550436512012	MCLEAN
start	40.5536214693649	-88.6155771894066	MCLEAN
end	40.5386135050112	-88.6150100834316	MCLEAN
ary of I	Masters Creek		
			51 5 5 4 1 I
start	41.5407471962821	-89.4154110620948	BUREAU
end	41.5452528261938	-89.4130/98090/44	BUREAU
ary of I	Masters Fork		
	41 610420597991	00 2000607128710	
start	41.510430587881	-89.3900307138719	LEE
	Nottle Creek	-07.2905200704770	
ary of .	veine Creek		
ctort	41 4088814108004	-88 5216683050888	GRUNDY
end	41.4088814108094	-88 5339604493093	GRUNDY
any of	Ninnersink Creek	00.000000000000000000000000000000000000	0
ury oj 1	inppersink Creek		
start	42.4692291197455	-88,4764236384547	MCHENRY
end	42.4695432978934	-88.5110499918451	MCHENRY
start	42.4176539163554	-88.3444740410368	MCHENRY
end	42.4179067763647	-88.3502762821058	MCHENRY
start	42.3969278131381	-88.4109784072142	MCHENRY
end	42.3875994074602	-88.4491666706176	MCHENRY
ary of I	North Fork of Sal	t Creek	
	40.000000000000000000000000000000000000	00 7202260564625	MOLEAN
start	40.3598944577027	-88./302300304033	MCLEAN
ena	40.3817240400007	-00./40100/330303	MCLEAN
ctart	40 3620541452609	-88.7204600533309	MCLEAN
start end	40.3620541452609 40.3690272117515	-88.7204600533309 -88.6961244618476	MCLEAN MCLEAN
start end	40.3620541452609 40.3690272117515	-88.7204600533309 -88.6961244618476	MCLEAN MCLEAN
start end start	40.3620541452609 40.3690272117515 40.2987649882463	-88.7204600533309 -88.6961244618476 -88.7603546124853	MCLEAN MCLEAN MCLEAN
start end start end	40.3620541452609 40.3690272117515 40.2987649882463 40.3051172967471	-88.7204600533309 -88.6961244618476 -88.7603546124853 -88.7525145171727	MCLEAN MCLEAN MCLEAN MCLEAN
	ary of , start end start end start end start end start end start end ary of , start end ary of , start end start end ary of , start end start end ary of , start end start end start end start end ary of , start end	Latitude ary of Lone Tree Creek start 40.3145980401842 end 40.3084681821929 start 40.3200878690807 end 40.3246054213609 start 40.3555955038811 end 40.3553786361326 ary of Mackinaw River start 40.5649627479232 end 40.4956570103387 start 40.558742486097 end 40.532461937187 start 40.5536214693649 end 40.5386135050112 ary of Masters Creek start 41.5407471962821 end 41.5452528261938 ary of Masters Fork start 41.510430587881 end 41.6181398940954 ary of Nettle Creek start 41.4088814108094 end 41.4186133676397 ary of Nippersink Creek start 42.4692291197455 end 42.4595432978934 start 42.4176539163554 end 42.4179067763647 start 42.3969278131381 end 42.3875994074602 ary of North Fork of Sal start 40.3598944577027 end 40.3817246400667	Latitude Longitude ary of Lone Tree Creek -88.4738655755984 end 40.3084681821929 -88.4738655755984 end 40.3084681821929 start 40.3200878690807 -88.4721825603404 start 40.3200878690807 -88.4758169784284 end 40.3246054213609 -88.4758169784284 end 40.3246054213609 start 40.3555955038811 end 40.3553786361326 -88.4486860730234 end 40.3553786361326 -88.4890287857383 ary of Mackinaw River -88.5106552787079 start 40.558742486097 end 40.532461937187 -88.5106552787079 start 40.5536214693649 -88.6155771894066 end 40.5386135050112 -88.6150100834316 ary of Masters Creek -89.4154110620948 start 41.51047071962821 -89.4154110620948 end 41.6181398940954 -89.3900507138719 end 41.6181398940954 -89.3900507138719 start 41.510430587881 -89.3900507138719 end 41.4186133676397 -88.4764236384547 ary of Nietle Creek -88.5110499918451 start 42.4692291197455 -88.4764236384547 end 42.4179067763647 -88.3502762821058 start 42.3969278131381 -88.4109784072142 end 42.4179067763647

BASIN NAME

Page 15 of 37

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
179				
	start	39.9411115612757	-90.0607356525317	CASS
	end	39.9350887523192	-90.047762075576	CASS
Unnamed Tribute	arv of .	Pond Creek		
211				
	start	41.3541221673156	-89.6001721270724	BUREAU
	end	41.3352313411595	-89.5875580793812	BUREAU
Unnamed Tribut	arv of	Prairie Creek		
78	••••••••••••••••••••••••••••••••••••••	740700 010000		
70	start	40 2086608970772	-89.6103029312127	MASON
	end	40.2239585519289	-89.638616348402	MASON
80	Chia	40.2255505517205	09.0000100.00.002	
ov	etart	40 3105388304102	-89 4819788351989	LOGAN
	end	40.3114851545122	-89 4410508250634	LOGAN
View and Twilet		Dooks Cuark	05.1110500250001	200111
Unnamea Iribuii	ury oj .	ROOKS Creek		
387		40 761 5422070022	00 6753675077013	IWNGSTON
	start	40.7010433072922	-00.0/320/37//812 88 6085072106457	MOLEAN
T T T T T T	end	40./348/42139319	-00.07030/310043/	WICLEAN
Unnamed Tribute	ary of	Salt Creek		
412				
	start	40.3090617343957	-88.6002511568763	MCLEAN
	end	40.3165662374132	-88.6011454430269	MCLEAN
Unnamed Tribute	ary of l	Sandy Creek		
108				
	start	41.0816545465891	-89.0921996326175	MARSHALL
	end	41.0690044849354	-89.0872784559417	MARSHALL
Unnamed Tribute	ary of	Sangamon River		
414		0		
	start	40.2187198550443	-88.3726776422252	CHAMPAIGN
	end	40.207759150969	-88.3556670563292	CHAMPAIGN
415				
	start	40.2618571248343	-88.3804307110291	CHAMPAIGN
	end	40.2604569179243	-88.4076966986332	CHAMPAIGN
Unnamed Tribut	arv of	Senachwine Creek	k	
07	ary of		•	
71	etart	41 0729094906046	-89 5194162172506	MARSHALL
	end	41 1005615839111	-89 5247542292286	MARSHALL
0.8	CIN	41.1005015055111	0,02,70,02,2200	
70	start	41 0008160428297	-89 5071527441621	MARSHALL
	end	41.0407981005047	-89.5430844273656	MARSHALL
Unwawed Tribut	an of	Walnut Creek		
Unnumeu Irivui	ury oj	muinui Creek		
130		41 0011500501416	00.0622765005186	KNOY
	stan	41.0811500581410	-90.0032703003180	KNOX
	ena	41.084/00000000	-90.0060705617570	KNOA
132		41 0/00505/09031	00.0020042302073	KNON
	start	41.0002585008831	-89.98090402038/3	NUA CTADV
	end	41.0/21001009241	-07.7/221200200/2	JIAK
133		41 00/04/201000	00.0515000500005	OTADE
	start	41.0262443553352	-89.9515238620526	SIAKK
	end	41.0340/88244836	-89.924/211/5//2	STAKK
Unnamed Tribut	ary of	West Bureau Cree	2K	
215				
	start	41.4606455355906	-89.5251264675481	BUREAŬ

BASIN NAME

Page 16 of 37

<i>Segment Name</i> Segment No.							
End Points		Latitude	Longitude	COUNTY			
	end	41.4958522845312	-89.5472802493082	BUREAU			
Unnamed Tributa	ry of	West Fork Sugar	Creek				
85						,	
	start	40.3381506914873	-89.2954898975603	TAZEWELL			
96	ena	40.3000114221740	-89.2448498120390	MCLEAN			
80	start	40 3105145326502	-89 3291625265707	LOGAN			
	end	40.3299182729366	-89.3779530037535	TAZEWELL			
Vallev Run							
241							
	start	41.4172036201222	-88.3955434158999	GRUNDY			
	end	41.5039796750174	-88.5041976708714	KENDALL			
Vermilion Creek 235							
	start	41.4768291322914	-89.0571044195371	LASALLE			
	end	41.5338604103044	-89.0473804190906	LASALLE			
Vermilion River 385							
	start	41.3202746199326	-89.067686548398	LASALLE			
	end	40.8817674383366	-88.6504671722722	LIVINGSTON			
Walnut Creek 128					·		
	start	40.9597510841493	-89.9769499175619	PEORIA			
40.4	end	41.12653217294	-90.2059192933585	KNUX			
404	start	40 6253040823561	-89 239009045057	WOODFORD			
	end	40.0253040825501	-89 3054156233977	WOODFORD			
Waubonsie Creek	Circi	40.7070003190001	03.500 1100000377				
213	stort	A1 6864601774875	-88 35/3201766866	KENDALI			
	end	41.0804091774875	-88.2343231700800	KANE			
Waupecan Creek	chd	41.121033012300	00.2017220110107				
202	start	41 3345412028515	-88.4648617458928	GRUNDY			
	end	41.1880870688571	-88.5889392759762	LASALLE			
Welch Creek 278	-						
	start	41.7390229211455	-88.5133300234389	KANE			
	end	41.7542282081589	-88.4963865174814	KANE			
West Branch Big 1 276	Kock	Creek					
	start	41.7542830239271	-88.5621632556731	KANE			
	end	41.791467372356	-88.0440656199133	DEKALB			
West Branch Drui 424	mmer	Creek	00 000 454 455 000	1000 D			
	start	40.4348513301682	-88.3934764271309 _88.4056995893214	FORD			ι.
West Branch Du l	Page 1	River	-00.4030773073414				
209	start	41.7019525201778	-88.1476209409341 -88.1712650214772	WILL			
Wost Buanch of F	CHU actoul	41.1177423007194	-00.1/12030214//2	DUIAUE			
411	usiert	nook Dram				_	

Page 17 of 37

BASIN NAME

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	40.3633709579832	-88.5816306009141	MCLEAN
	end	40.3762064931712	-88.5843/53634505	MULEAN
West Branch of E	lorse C	reek		
263	atort	41 2402485076225	88 1312055800841	WILL
	end	41.0019131557324	-88.1364114459172	KANKAKEE
West Branch of I	amars	h Creek		
91			·	
	start	40.5615978513207	-89.6991824445749	PEORIA
	end	40.640281675188	-89.7388615248892	PEORIA
West Branch Pan	ther C	reek		
407				
	start	40.7528335084236	-89.1030067348099	WOODFORD
	end	40.7954060105963	-89.1900600098668	WOUDFURD
West Bureau Cre	ек			
213	atant	41 2200010742583	80 5105016727401	BURFAIL
	end	41.3209910742383	-89.5152211006131	BUREAU
West Fork Mazor	ı River	•		
260	111101			
200	start	41.2530670781541	-88.3508667933585	GRUNDY
	end	41.0302502359071	-88.5226194555857	LIVINGSTON
West Fork Salt C	reek			
74				
	start	40.317360196629	-88.7559599297755	MCLEAN
	end	40.3372561693307	-88.80390/0809984	MULEAN
West Fork Sugar	Стеек			
84	etart	10 2844404292499	-89 332075650855	LOGAN
	end	40.4558745105979	-89.1642930044364	MCLEAN
Wolf Creek				
497				
	start	41.1540042913791	-88.8612912917747	LASALLE
	end	41.1611802253124	-88.8310854379729	LASALLE
Kaskaskia				
Rearcat Creek				
37				
	start	39.0121682814832	-89.5317265036074	BOND
	end	39.0568357269204	-89.4889786056249	MONTGOMERY
Becks Creek				
45			00.040115/200075	DAXDOTE
	start	39.1565938305703	-88.9491156388975	FAYEILE
Burnels Count	ena	39.3002461794206	-89.0227919636745	SHELDI
Drusn Creek		а.		
39	start	39 1385354787129	-89 5805305687638	MONTGOMERY
	end	39.1539913389194	-89.561368040102	MONTGOMERY
Cress Creek				
41				н. На селото се
_	start	39.1652709439739	-89.5012992382647	MONTGOMERY
	end	39.1962551507602	-89.5131844155481	MONTGOMERY

Dry Fork

.

BASIN NAME

March 31, 2006

Page 18 of 37

.

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
43				
	start	39.036113738887	-89.2488135289512	FAYETTE
	end	39.1033131262537	-89.2984242244004	MONTGOMERY
East Fork Shoal C	reek			
23	ctort	38 8310032253066	-80 4000300331030	BOND
	end	38.9226451880864	-89.4117554251748	BOND
Gerhardt Creek	0110		••••••	
27			,	
	start	38.3445550793694	-90.0600653224456	ST. CLAIR
	end	38.367857922464	-90.0997565611344	MONROE
Hurricane Creek				
42			00.0470000104101	
	start	38.9180334233238	-89.24/2989134191	FAYETTE
Loop Creek	enu	33.2107340340078	-07.2707204155051	MONTGOMERT
21				
	start	38.4738791704891	-89.8286629587977	ST. CLAIR
	end	38.4996759642082	-89.9058988238884	ST. CLAIR
Middle Fork Shoa	l Cre	ek		
40				
	start	39.0848984732588	-89.5438724131899	MONTGOMERY
Mitch all Creak	епа	39.1808483992313	-69.4/98328829232	MUNIGUMERI
Ag				
40	start	39.1565938305703	-88.9491156388975	FAYETTE
	end	39.3191569074355	-88.9291931738519	SHELBY
Mud Creek				
51				
	start	39.4078984061571	-88.8964126852371	SHELBY
Nin amile Cuash	end	39.4/86612118046	-88.9523280940578	SHELBY
Ninemue Creek				
50	start	38.0441291788376	-89.9112042263573	RANDOLPH
	end	38.0507383485977	-89.8278402421236	RANDOLPH
O possum Creek				
- 46				
	start	39.2718719283603	-89.006345202583	SHELBY
Duratinta du Laura C	end	39.2833737967471	-89.0555186821259	SHELBY
Prairie au Long C	геек			
24	start	38.2583950460692	-89.9674114204896	MONROE
	end	38.3425597902873	-90.0517323138269	ST. CLAIR
Robinson Creek				
50				
	start	39.3519556417502	-88.8434641389225	SHELBY
	end	39.5215530679793	-88.8331635597113	SHELBY
Kocknouse Creek				
25	start	38 279441694169	-90 0367398173562	MONROF
	end	38.2999005789932	-90.1039357731424	MONROE
Section Creek		_		
49				

.

.

Page 19 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	39.1835497280833	-88.9455894742885	FAYETTE
	end	39.1959160048126	-88.961892707007	FAYETTE
Shoal Creek				
22				
	start	38.4831106563982	-89.5775456200079	WASHINGTON
A /	end	38.5557239981111	-89.4968640710432	CLINTON
30	atout	20 02100220000022	80 4000300403803	BOND
	end	39 0848755752581	-89.5439018081354	MONTGOMERY
Silver Creek	CIIC	39.0040733792301	09.0409010001001	
20 20				
20	start	38.3369025707936	-89.8753691916515	ST. CLAIR
	end	38.5568068204478	-89.8305698867169	ST. CLAIR
Stringtown Branc	h			
53				
	start	39.7138824796477	-88.6677549810426	MOULTRIE
	end	39.7363136714592	-88.6944718913546	MOULTRIE
Unnamed Tributa	ry of	Gerhardt Creek		
26				
	start	38.367857922464	-90.0997565611344	MONROE
	end	38.3742880966457	-90.110/0/4126403	MONROE
Unnamed Tributa	ry of	Okaw Kiver		
54		10 73 40 497 4706 4	00 6600001507617	MOLILTRIE
	start	39./34248/4/004	-88.6020801387017	PIATT
Walton Crock	end	JJ.00990JJJZJ 4	-00.0707500045412	
rruners Creen				
20	start	38 3425597902873	-90.0517323138269	ST. CLAIR
	end	38.3445550793694	-90.0600653224456	ST. CLAIR
West Fork Shoal	Creek			
38				
	start	39.1385354787129	-89.5805305687638	MONTGOMERY
	end	39.1877434015581	-89.6041666305308	MONTGOMERY
West Okaw River				
52				
	start	39.6158126349278	-88.7105522558061	MOULTRIE
	end	39.7564321977535	-88.630211952428	MOULIRIE
Mississippi Rive	er			
Apple River				
372				
	start	42.3210892387922	-90.2520915343109	JO DAVIESS
	end	42.5078007598632	-90.1320538371008	JO DAVIESS
Bear Creek				
199		40.1401000410700	01 202057102417	
	start	40.1421908412793	-91.322037103417	ADAMS HANCOCK
Blanch Court	ena	40.5507007400412	-71.1021272002194	INNCOCK
Digneck Creek				
205	ctort	40 1189668648562	-91 2247381726013	ADAMS
	end	40.118891177483	-91.1409739765636	ADAMS
Burton Creek		· · · · · · · · · · · · · · · · · · ·		

192

March 31, 2006

Page 20 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	39.8643091712617	-91.343323220756	ADAMS
	end	39.92393403238	-91.2381482737218	ADAMS
Camp Creek				
140				
	start	41.2607621817314	-90.514303172809	MERCER
1.40	ела	41.31144642/4682	-90.2470050448035	HENKI
142	ctort	41 2202380211465	-00 805164706358	MERCER
	end	41.2787933006746	-90.6950345992843	MERCER
Carroll Creek				
349				
	start	42.1027782814517	-90.0265311556732	CARROLL
	end	42.0906369943302	-89.8985337135691	CARROLL
Clear Creek				
6				
	start	37.4821139304798	-89.377768200259	UNION
201	end	37.5377402977406	-89.331689550578	UNION
381	atant	42 4469295101021	00 0477460146000	IO DAVIESS
	end	42.4408383101031	-90.0472400140393	JO DAVIESS
Coon Creek	cha	42.4100700001700	90.0991 2 ,001010	
376				
570	start	42,4035528739642	-90.1272819897867	JO DAVIESS
	end	42.4347098804951	-90.1169407822902	JO DAVIESS
Copperas Creek				
148				
	start	41.3717279574558	-90.901871458269	ROCK ISLAND
	end	41.3616090539824	-90.7468725613692	ROCK ISLAND
Deep Run				
155		40 00001 ((00 4010	00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	UENDERCON
	start	40.7779100934519	-90.9039489233700 00.0474772004134	HENDERSON
Diverse Cussk	enu	40.794070790006	-70.74/4//2704154	HENDERSON
Dason Creek				
154	start	40.7684181600505	-90.9376123103323	HENDERSON
	end	40.7650613473293	-90.9262679175808	HENDERSON
Dutch Creek				
4				
	start	37.4593003249666	-89.3688365937935	UNION
	end	37.4147572383786	-89.2744790735331	UNION
East Fork Galena	t River	•		
383		40 460041616050	00.007/407100745	IO DAVIESS
	start	42.450241015252	-90.38/049/193/45	JO DAVIESS
Edwards Divar	ena	42.40/007007007095	-90.200824403001	JO DA HESS
Luwurus Aiver 145				
145	start	41.1459068953479	-90.9832855425151	MERCER
	end	41.2835429634312	-90.1022166001482	HENRY
Eliza Creek	_			
146				
	start	41.2754465656779	-90.9740195834639	MERCER
	end	41.2948140261561	-90.8870757880317	MERCER
Ellison Creek				

.

Page 21 of 37

Segment Name				
End Points		Latitude	Longitude	COUNTY
1 <i>53</i>		Latitude	Longhude	000000
155	etart	40 7615810130860	-91 0723400800456	HENDERSON
	end	40.7295594797542	-90.7480413061409	WARREN
Galana Rivar	chu	40.7273374777342	90.7400 119001 109	in addsire
207				
304	start	42 450241615252	-90 3876497193745	IO DAVIESS
	end	42.5068721036534	-90.390459616835	JO DAVIESS
Green Creek	••••			
5				
J.	start	37.4514943718452	-89.3379244013686	UNION
	end	37.4666314694209	-89.3048476846202	UNION
Hadlev Creek				
188				
	start	39.7025380326419	-91.1396851101986	PIKE
	end	39.7351716794518	-90.9664567571417	PIKE
Hells Branch				
378				
	start	42.3582317355027	-90.185076448587	JO DAVIESS
	end	42.4166702490621	-90.1660286242329	JO DAVIESS
Henderson Creek				
134				
	start	41.0518601460692	-90.652709618504	WARREN
	end	41.0728998007979	-90.3331881878676	KNOX
150				
	start	40.8788582366336	-90.9641994146698	HENDERSON
	end	40.98988858503038	-90.80988/3032330	HENDERSON
Hulery Creek				
144		41 000004405207	00 202011 (075201	UENDV
	start	41.2099394403307	-90.2020110073301	HENRY
How on Creak	enu	41.2555101025525	-90.1994903442012	
noney Creek				
157	etart	40 7000823335975	-91 0347691132118	HENDERSON
	end	40.7064734203141	-90.8589436695132	HENDERSON
186	Und	101/001101200111		
200	start	39.4871465283426	-90.7799240715991	PIKE
	end	39.5633421986505	-90.8011460205638	PÍKE
207				
	start	40.1052246871151	-91.2149469620062	ADAMS
	end	40.0689996865178	-91.2253825583113	ADAMS
Hutchins Creek				
7				•
	start	37.5043385818368	-89.3755380391598	UNION
	end	37.58788138261	-89.3917584202331	UNION
Little Bear Creek				
194				HANGOOK
	start	40.3213003292038	-91.2390256840921	HANCOCK
	end	40.302/5302188/	-91.510255050/924	NUUUK
Little Creek				
200		40 1007260422072	01 2002020126001	477476
	start	40.180/3004330/3	-91.2003000130891	ADAMO HANCOCK
MaCuar an Cua-L	end	+0.23012/123031	-71.3031401003504	INTOON
мсстипеу Стеек				

•

March 31, 2006

BASIN NAME

Page 22 of 37

<i>Segment Name</i> Segment No.				
End Points		Latitude	Longitude	COUNTY
189				
	start	39.7167396162723	-91.1729844320811	PIKE
	end	39.8572624790589	-91.0907175471865	ADAMS
Mill Creek				
191				
	start	39.8643091712617	-91.343323220756	ADAMS
	end	39.9675786362521	-91.2477003180771	ADAMS
377				
	start	42.3539782358808	-90.1879698650198	JO DAVIESS
	end	42.4518923573772	-90.2485882677025	JO DAVIESS
496				
	start	38.9472270910927	-90.2956721236088	JERSEY
	end	38.9871246152411	-90.3431576290565	JERSEY
Mississippi River 2				
	end	37.1887629940337	-89.4576720472899	ALEXANDER
29				
	start	38.8664117755941	-90.1477786925267	MADISON
	end	38.327795025976	-90.3709302644266	MONROE
384				
	start	42.5079432477656	-90.6430378486115	JO DAVIESS
	end	41.5746193723759	-90.392321397091	ROCK ISLAND
440				
	start	39.326689248302	-90.8243988873681	CALHOUN
	end	39.8935238218567	-91.4437639810547	ADAMS
Mud Creek				
202	start	40 1812148450863	-91.2785060826782	ADAMS
	end	40.1852755387137	-91.2660018265735	ADAMS
Nichols Run				
156				
150	start	40 7735451176215	-90 9672827833242	HENDERSON
	end	40.7648298879037	-90 9675416302885	HENDERSON
North Handarson	Crool	k	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
124	01001	•		а. С
150	etart	41 0073610647032	-00 7101141378965	MERCER
	end	41 119743833988	-90,4494190524502	MERCER
Darker Dun	cnu	00/06/07	//////////////////////////////////////	
Г ЦІ КЄГ КИЙ 1 А 1				
141	etart	41 2623500450087	-00 4801341810073	MERCER
	end	41 2260011828886	-90 4145431241447	HENRY
Diagon Crack	chu	41.2200011020000	-)0.1119491241147	
LIGEUN CIEEN				
190	atort	20 71/220/171254	01 2372670/11//05	DIKE
	start	39./1432041/1334	-91.23/20/0411403	ADAMS
Domo Cucal	ena	37.0220301000904	-/1.400/344733343	(MALINIA)
rope Creek				
157		41 1401427001014	00.0116016200000	MEDCED
	start	41.1401437091914	->U.0110010399802 00 2877112220005	KNOY
Giana II. Const	end	41,133413/238391	-90.20//112230993	MINON
Sixmue Creek				
18 7		20 4502604020507	00 0000507124026	סועב
	start	39.4392004039397	-90.890230/134230	LIVE
	end	39.343103/339383	-90.0091090310201	TINE

.

BASIN NAME

Page 23 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
Slater Creek				
198				HANGOOK
	start	40.291601584329	-91.2423526162923	HANCOCK
Swith Cuash	ena	40.2822883732908	-91.2109///104029	HANCOCK
Smun Creek				
152	start	40.9297989285848	-90.9146232873076	HENDERSON
	end	40.9291958384872	-90.7919464822621	HENDERSON
South Edwards R	iver			
139				
	start	41.2656645104853	-90.2611866223557	HENRY
Court Frank Annals	end	41.1927071399434	-90.0393078982575	HENKI
South Fork Apple	Kivei	~		
300	start	42.4468385101031	-90.0472460146999	JO DAVIESS
	end	42.4176188464167	-89.9845802036023	JO DAVIESS
South Fork Bear	Creek			
203				
	start	40.1677973436879	-91.2933473698779	ADAMS
	end	40.0950329934447	-91.060/522810856	ADAMS
South Henderson	Creei	C		
155	start	41 0188478643653	-90.4811337762604	WARREN
	end	41.0121123609019	-90.4338464913801	KNOX
151				
	start	40.8788582366336	-90.9641994146698	HENDERSON
	end	40.8534764362853	-90.8707263659685	HENDERSON
Straddle Creek				
301	ctort	42 0906369943302	-89 8985337135691	CARROLL
	end	42.1316680929413	-89.783599495409	CARROLL
Thurman Creek				
204				
	start	40.1277667094818	-91.234525810555	ADAMS
	end	40.1580795200863	-91.1501036788115	ADAMS
Tournear Creek				
193	start	39 9042285951329	-91 2447718289928	ADAMS
	end	39.8738503674823	-91.1658282439773	ADAMS
Unnamed Tributa	ry of .	Apple River		
375				
	start	42.3613497834653	-90.1603277978963	JO DAVIESS
	end	42.3651703478401	-90.1182227692179	JO DAVIESS
Unnamed Tributa	iry of .	Bear Creek		
197	etort	40 3187160045841	-91 2379753573306	HANCOCK
	end	40.3220475782343	-91.2218711128768	HANCOCK
201				
	start	40.2483484763178	-91.2634157983708	HANCOCK
	end	40.2576281291385	-91.2420554576986	HANCOCK
Unnamed Tributa	iry of	Copperas Creek		
149		41 2750120507612	00 8560366004030	BUCK ISI AND
	start	41.3/3913036/012	-20.0202200224222	NOCK IDLAND

Page 24 of 37

.

.

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	end	41.3735944469795	-90.829794872711	ROCK ISLAND
Unnamed Tributa	ry of .	Furnace Creek		
373				
	start	42.3419228115146	-90.2583358633166	JO DAVIESS
	end	42.3737126096251	-90.2971522307335	JO DAVIESS
374		10 0 110 00011 01 10	00 0500050(001)((IO DAVIESS
	start	42.3419228115146	-90.2383338033100	JO DAVIESS
Ile and Tuibute		42.3013209718391 Couth Edwards Di	-90.24931703774	10 DA VIE65
Unnamea Iribuia 142	ry oj .	Souin Luwaras Ki	vei	
145	start	41 2011516193172	-90 1850818577344	HENRY
	end	41.1943841818099	-90.1839265246101	HENRY
Unnamed Tributa	rv of .	South Fork of Bea	ır Creek	
206	., ., .			
	start	40.0797919556019	-91.1461193615862	ADAMS
	end	40.0587441356106	-91.1467388825794	ADAMS
West Fork Apple	River			
379				
	start	42.4777531846594	-90.1103501186504	JO DAVIESS
W . F 1 CB	end	42.4739843218597	-90.1321517307332	JU DAVIESS
West Fork of Bea	r Cree	?К		
195	start	40 3385207135212	-01 2203303068898	HANCOCK
	end	40.3592824400704	-91.2334357995319	HANCOCK
Yankee Branch	•iiu			
147				
2.0	start	41.2850778212191	-90.9379823025264	MERCER
	end	41.2926277702981	-90.9335620769218	MERCER
Ohio				
Rig Creek				
16				
Ĩ	start	37.4366764302436	-88.3127424957005	HARDIN
	end	37.5591274535694	-88.3148730216063	HARDIN
Big Grand Pierre	Creek	Ċ		
13				
	start	37.4163002207384	-88.4338876873615	POPE
	end	37.5702304746463	-88.4292613661871	POPE
Hayes Creek				
10	atort	27 4452221751072	88 711/120050/17	IOHNSON
	end	37 4559134065693	-88.6286228702431	POPE
Hicks Branch	Und	5111505151000000		
14				
- •	start	37.5432903813926	-88.4245265989312	POPE
	end	37.5391971894773	-88.4135144509885	HARDIN
Little Lusk Creek				
12				
	start	37.4991426291527	-88.5277357332102	POPE
	end	37.5247950767618	-88.5017934865946	POPE
Little Saline River	٣			
- 9			00 (0000000000000	CAT DIE
	start	37.6429893859023	-88.02292/3282692	SALINE

.

Page 25 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	end	37.5783125058777	-88.7169929932876	JOHNSON
Lusk Creek				
11		27 268652048804	00 4004140007040	DODE
	end	37.5649232438096	-88 5644984122843	POPE
Miss River	VIIG	57.5017252150070		
2				
	start	36.9810279805712	-89.1311552055554	ALEXANDER
Ohio River				
1				
	start	36.9810279805712	-89.1311552055554	ALEXANDER
Simmons Creat	end	37.7995447392016	-88.0255709974801	GALLATIN
SIMMONS Creek				
15	start	37.4274681380208	-88.4392381154217	POPE
	end	37.4644921054999	-88.4850750109356	POPE
South Fork Saline	e Rive	r		
8				
	start	37.6372646144582	-88.6447143188352	SALINE
The second of The Lands	end	37.6650992000287	-88.7471054185807	WILLIAMSON
Unnamea Iribuia	ry oj .	Dig Creek		
10	start	37.4816237108967	-88.3412279259479	HARDIN
	end	37.4836843600581	-88.3434390004066	HARDIN
Wabash River				
488				
	start	37.7995447392016	-88.0255709974801	GALLATIN
Rock				
Beach Creek				
302				
	start	41.8989215290323	-89.121081932608	OGLE
Pagnan Cuash	ena	41.8057759544505	-09.103044104307	LEE
322				
522	start	42.2551087433884	-88.9247700103803	BOONE
	end	42.4341346635117	-88.7603784300954	BOONE
Black Walnut Cre	ek			
341			00 01 11 0001 001 00	001 5
	start	42.1132080942552	-89.2141520188153	OGLE
Brown Creak	ena	42.001337908797	-09.2010000150555	OGLE
335				•
000	start	42.3568412672282	-89.4493817584574	STEPHENSON
	end	42.3697340053709	-89.4802304815634	STEPHENSON
Buffalo Creek				
358		41 004077000000	00 60000 55050001	MILITEOLE
	start	41.9242552302868	-89.0809355972221	WHITESIDE OGLE
Codar Crook	end	71.7 <i>136313</i> 033638	-07.0243077203402	
227				
551	start	42.3709196286357	-89.670256711355	STEPHENSON
	end	42.3896058186609	-89.5870343171161	STEPHENSON

Page 26 of 37

•

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
Coal Creek				
208				
	start	41.3941767873198	-89.8287586795479	BUREAU
	end	41.2930847238959	-89.6659810678663	BUREAU
Coon Creek				
304		40.006507100004	90 490365571357	OCIE
	start	42.0303871032824	-89.489303371237	OGLE
326	chu	42.000020220270	-07.4702775757107	OGDE
540	start	42.254519734978	-88.7945563884938	BOONE
	end	42.1336677087989	-88.6039205825106	DEKALB
Crane Grove Cree	ek			
371				
	start	42.2656461748962	-89.6058461735176	STEPHENSON
	end	42.2317224844045	-89.5804359629382	STEPHENSON
Deer Creek				
307	atout	42 1046105671607	88 7767155451450	DEKALB
	end	42.1040193071097	-88.6684575625598	DEKALB
Dry Creek	ona	12.10705 11905501		
332				
002	start	42.4322162336943	-89.0509181181504	WINNEBAGO
	end	42.4892211712754	-88.9789486331688	WINNEBAGO
East Branch Sout	th Bra	nch of Kishw <mark>au</mark> ke	ee River	
306				
	start	42.0108038948242	-88.7236807475971	DEKALB
	end	41.9822037358546	-88.5449399063616	KANE
East Fork Mill Cl	геек			
343	ctort	42 1402053000442	-89 2945061380348	OGLE
	end	42.1744627607887	-89.268245093523	OGLE
Fikhorn Creek	Und			
350				
	start	41.8392614813286	-89.6956810578758	WHITESIDE
	end	42.0864514128748	-89.636841111792	OGLE
Franklin Creek				
303				OCLE /
	start	41.8885909580789	-89.4120344682789	UGLE
Casas Creat	ena	41.830393180843	-89.3092913407339	LEE
Goose Creek				
330	start	41 9282951879448	-89.692114617634	WHITESIDE
	end	41.9476422569681	-89.6849104470831	OGLE
Green River				
359				
	start	41.6266589513433	-89.5688644755145	LEE
	end	41.8177589430141	-89.1263088319088	LEE
Kilbuck Creek			•	
312				WDDEDACO
	start	42.1838622639314	-89.1301689015062	WINNEBAGO
Vinashum Cush	ena	41.710171727798	-00.721230/30/239	DERVED
Aingsoury Creek				

.

Page 27 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	42.1077794424363	-88.8726630666396	DEKALB
	end	42.1579325310556	-88.8548684690422	BOONE
Kishwaukee River				
318		·		
	start	42.1866384939252	-89.1320796977525	WINNEBAGO
77 / D	end	42.2666635150817	-88.5250450377336	MCHENKY
Kyte River				
295	atort	41 0001250422710	80 2020207000070	OGUE
	end	41.9861230432719	-89.5252527202272	OGLE
Loaf River	çınd	41.9200990470909	05.0570052114007	COLL
345				
545	start	42.093677393629	-89.3249228482157	OGLE
	end	42.1545774626081	-89.5725820219443	OGLE
Lost Creek				
368				
	start	42.245723132043	-89.7807765552299	STEPHENSON
	end	42.2314500223394	-89.7709518073782	STEPHENSON
Middle Creek				
344				0.07 7
	start	42.1559584011258	-89.2911997709031	OGLE
Mill Curch	ena	42.1737499300401	-89.2931703012023	OGLE
ми стеек				
342	ctort	42 1206847838382	-80 2702143906076	OGLE
	end	42.2092574596508	-89.3358557551327	WINNEBAGO
Mosauito Creek	ond	12.207207.070000	07.0000007.007.001	
323				
545	start	42.3066628798583	-88.9047855300292	BOONE
	end	42.3100003482313	-88.9099328193755	BOONE
327				
	start	42.246521748985	-88.7802719043895	BOONE
	end	42.1906300595167	-88.7849304281662	BOONE
Mud Creek				
325		10 0 0000000000000000000000000000000000	00 7000 440 (000 00	DOONE
	start	42.2592878387497	-88.7503449089069	BOONE
346	enu	42.2803097009077	-66.7561150005569	BOONE
340	start	42 1301628959448	-89.4043328758949	OGLE
	end	42.1639762007661	-89.4554911246235	OGLE
North Branch Kisl	hwau	kee River		
320				
	start	42.2655855837644	-88.5514660318739	MCHENRY
	end	42.4163330454161	-88.5232715616737	MCHENRY
North Branch Otto	er Cre	eek		
292				
	start	42.4412940471901	-89.3074016078782	WINNEBAGO
	end	42.4570625094589	-89.356265092275	WINNEBAGO
North Fork Kent (reek			
333	_	40.0601660060474	00 0044216410724	
	start	42.2021003352074	-89.0944510410/34 -89.1651357272602	WINNEBAGO
Otton Cuash	end	-2.210-20204/00	-07.1031337273003	MINNEDAOO

Otter Creek March 31, 2006

Page 28 of 37

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
291				
	start	42.4565457866811	-89.2410171137247	WINNEBAGO
	end	42.4412940471901	-89.3074016078782	WINNEBAGO
348	- 4 4	40 10 45077020786	80 41 1 40 2002 40 7	OCLE
	start	42.1345277930780	-89.411492883497	OGLE
Owens Creek	chu	42.1911000097275	-07. 4 222025775551	OOLL
310				
510	start	42.1012605056104	-88.8850996053184	DEKALB
	end	41.994362186304	-88.8506687869106	DEKALB
Pine Creek				
305			•	
	start	41.9113031895505	-89.452879176459	OGLE
	end	42.0376146514025	-89.4909007464322	OGLE
Piscasaw Creek				
524	stort	42 2618062026707	88 8176068024108	BOONE
	end	42.2018003930707	-88 7041339551642	MCHENRY
Raccoon Creek	Cild	42.5710005547221	00.70415555551042	10011L1 (iv)
328				
010	start	42.4479288873423	-89.098286193015	WINNEBAGO
	end	42.4829761640917	-89.1400856130022	WINNEBAGO
Reid Creek				
353				
	start	41.8644109921615	-89.5919014348703	LEE
Distance of Course	end	41.913518/969506	-89.5728723309406	OGLE
Richland Creek				
530	etort	42 3456275205301	-80 6832413426115	STEPHENSON
	end	42.5047442687577	-89.6477619118761	STEPHENSON
Rock River				
294				
	start	41.9881250432719	-89.3232327202272	OGLE
	end	42.4962174640048	-89.0418910839077	WINNEBAGO
Rock Run				
490		10 0011070 / (0505	00 40070 40460710	OTTENICON
	start	42.32118/2403585	-89.423/342452/12	STEPHENSON
Rush Crook	Cild	42.4201070707774	-07.4405010200715	DIDINEROON
321				
521	start	42.2560676137827	-88.7031592940742	MCHENRY
	end	42.4031741332744	-88.5930626223964	MCHENRY
Silver Creek				
338				
	start	42.0611717976691	-89.335901928201	OGLE
	end	42.0866765435436	-89.3839889015445	OGLE
Skunk Creek				
354	atart	41 9704703076600	00 707767167799 <i>4</i>	WHITESIDE
	end	41.897582187238	-89.7290746844729	WHITESIDE
South Branch Kie	hwan	kee River	5517250710044725	
308				
	start	42.2001609257306	-88.9840657029051	WINNEBAGO

Page 29 of 37

.

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	end	41.9015798699947	-88.7706697182685	DEKALB
315				
	start end	42.2627093767756 42.1066209842679	-88.5609522875415 -88.4620443477841	MCHENRY KANE
South Branch of O	tter (Creek		
280				
	start end	42.4412940471901 42.4343122756071	-89.3074016078782 -89.3600650183381	WINNEBAGO WINNEBAGO
South Fork of Leas	(Rive	er		
347				
	start	42.1296104494647	-89.4546456401589	OGLE
	end	42.1085718337046	-89.5037134270228	OGLE
South Kinnikinnic	k Cre	eek		
330				
	start	42.419961259532	-89.018119476068	WINNEBAGO
	end	42.4190921988888	-88.8/1050//1//94	BOONE
Spring Creek				
339		40.000015000202	00 225546670709	OCLE
	start	42.0/09215390385	-89.323340079706	OGLE
Contra Dava	ena	42.0390137098790	-09.5110805700042	OGLE
Spring Kun				
313	ctart	42 0402370001041	-89.0065478421579	OGLE
	end	42.0507770466662	-88.9858854279893	OGLE
Steward Creek	ena			
207				
271	start	41.8903673258897	-89.1021064698423	OGLE
	end	41.8259979751563	-88.9624738458404	LEE
Stillman Creek		-		
340				
	start	42.1259475370515	-89.2319193482332	OGLE
	end	42.0372051268587	-89.1542573242497	OGLE
Sugar Creek 352				
	start	41.8392614813286	-89.6956810578758	WHITESIDE
	end	41.8644109921615	-89.5919014348703	LEE
Sugar River				
293				
	start	42.4357992567436	-89.1971727593158	WINNEBAGO
~ ~ .	end	42.4982890047043	-89.2024255077650	WINNEDAOO
Sumner Creek 334				
	start	42.3227762010459	-89.3830042631004	WINNEBAGO
	end	42.25195988987	-89.3997975146614	STEPHENSON
Turtle Creek				
329			00 0 40 00 50 1 70 400	
	start	42.4929910323531	-89.0439958173493	
	end	42.49613/1053418	-89,0240319221989	WINNEDAUU
Unnamed Tributai	y			
361	م	41 6609216004942	-80 4728200038511	IFE
	start	41.0000510904042	-89.4137140926471	LEE
365	ond		J	

.

365 March 31, 2006

Page 30 of 37

.

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start	41.7443681625006	-89.168951821186	LEE
	end	41.738182745458	-89.1042187039322	LEE
492				
	start	42.1246069284208	-88.5882544654343	DEKALB
	end	42.1028295788327	-88.5105326912596	KANE
Innamed Tributa	iry of .	Buffalo Creek		
357				
	start	41.9332348110612	-89.6342816030603	OGLE
	end	41.93890647032	-89.6092042883405	OGLE
Innamed Tributa	iry of a	Coon Creek		
282				
	start	42.1336677087989	-88.6039205825106	DEKALB
	end	42.0754334787177	-88.5442273447775	KANE
491				
	start	42.150113155436	-88.6091713292612	DEKALB
	end	42.1091/90844289	-88.30/09/3943393	NUTENKI
nnamed Tributa	iry of 1	Elkhorn Creek		
355		41.0070071054405	00 7110710126004	CARROLL
	start	41.93/88/1254405	-89./318/12130894	CARROLL
7. 	end	41.9525180771018	-09.7352702139012	CARROLL
nnamed Iributo	try of	Green River		
300	_44	41 0177500420141	00 1020000010000	TEE
	STart	41.81//289430141	-89.1203088319088	LEE
262	ena	41.0012034020007	-89.0290081408724	
302	start	41 66455888603	-89 4729486542104	LEE
	end	41.650155479351	-89.4398464027055	LEE
364	QIIG	11.000100177001	0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
201	start	41.750735979575	-89.2189268880904	LEE
	end	41.7278383993539	-89.1577958588247	LEE
366				
	start	41.7304138832457	-89.2547363744761	LEE
	end	41.7421804770435	-89.2683034846455	LEE
367				
	start	41.7336722733557	-89.2459381167869	LEE
	end	41.6996843512729	-89.2025409068097	LEE
489				
	start	41.7765356433433	-89.1781811586274	LEE
	end	41.791148742648	-89.1/82543204659	LEE
Unnamed Tribute	ary of .	Kyte River		
298				OCUE
	start	41.969037423435	-89.2/2/93220//85	OGLE
200	end	41.9423408128044	-89.2070232301333	OGLE
299	stort	41 0474177969714	80 1742020304606	OGIE
	start	41.94/4122006214	-89.1742920304000	OGLE
Innamed Tuib.		North Branch Vie	hwaukaa Dinar	
Unnumea Triduii 210	ary of 1	avia drunch Als	HIVUANCE NIVEI	
319	-	42 4162220454161	88 5323715616727	MCHENDY
	Siart	42.4103330434101	-88 5063783403038	MCHENRY
Innan of Tall.	2013 ••••	72.9210323042031	-00.000700790990	MUCHTERINIC I
Unnamea Iriduta	iry of .	NUCK NIVEF		
331		12 2720000457250	80 0581210422428	
	start	42.3/3008943/339	-07.0301317432420	MINEDAUO

March 31, 2006

Page 31 of 37

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	end	42.382841503485	-89.0950184603254	WINNEBAGO
Unnamed Tributa	iry of S	South Branch Kish	waukee River	
309	2 2			
	start	42.1219922946716	-88.9236557341498	DEKALB
	end	42.1138208388943	-88.9372243118963	DEKALB
316				
	start	42.1565644453666	-88.4449935784875	MCHENRY
	end	42.1594149792506	-88.4178533576301	MCHENRY
317				VOUENDY
	start	42.234010247227	-88.5199093/235/0	MCHENRY
	end	42.2225793216803	-88.5259200250801	MODENKI
Unnamed Tribute	iry of S	Spring Run	·	
314			00 00400/07/7040	
	start	42.0401565844742	-88.9948803/0/949	OGLE
	end	42.0110855705089	-00.9/100/2200001	OULL
Unnamed Iribute	try of 2	Stewara Creek		
296	-44	41 0444603040033	80.0070046248547	IFF
	start	41.8444392840822	-89.0070040246547	LEE
200	ena	41.0001000040010	-00.971-12711100x1	222
300	start	41 871719116543	-89.069434926448	LEE
	end	41.8792477545579	-89.037635229652	LEE
Unnamed Tribut	nrv of	Yellow Creek		
369				
	start	42.3067615221991	-89.8535571166391	STEPHENSON
	end	42:3493669268537	-89.8275355259147	STEPHENSON
West Fork Elkho	rn Cre	ek		
351				
	start	42.0864514128748	-89.636841111792	OGLE
	end	42.0924853439498	-89.6474944357754	OGLE
Willow Creek				
363				
	start	41.7653209616214	-89.1943294683724	LEE
	end	41.7141851660088	-89.032161004274	LEE
Yellow Creek				
370				
	start	42.2899156684427	-89.5696276563017	STEPHENSON
	end	42.3796215769162	-89.9350879560031	JO DAVIESS
Wabash				
Bean Creek				
437				
	start	40.2950579779894	-87.7823902126108	VERMILION
	end	40.3344744135429	-87.7494458762005	VERMILION
Big Creek				
457				
	start	39.3351439545995	-87.5878012286214	CLARK
	start	39.436126036547	-87.7023848396263	CLARK
Bluegrass Creek				
436				
	start	40.301292752824	-87.7969361668719	VERMILION
	end	40.381268589802	-87.8562389558508	VERMILIUN

Brouilletts Creek

March 31, 2006

Page 32 of 37

.

BASIN NAME				
Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
450				777 C (P
	start	39.7057649552945	-87.5509615193818	EDGAR
Burnh Curret	ena	39.797449971524	-87.7178559181405	EDOAK
Brush Creek				
408	ctart	38 993072718826	-88 1273817532169	JASPER
	end	38.9675510537677	-88.1471375817992	JASPER
Brushv Fork				
484				
	start	39.7161188745587	-88.0853294840712	DOUGLAS
	end	39.8111289403664	-87.8839288887749	EDGAR
Buck Creek				
435		40.0116106024204	97 0266710964090	VEDMILION
	start	40.3115120234324	-87.9235710834089	CHAMPAIGN
Cassall Creat	ena	40.20020/0027100	J,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
473				
775	start	39.4866434423672	-88.2094970436354	COLES
	end	39.4909698054293	-88.207848854172	COLES
Catfish Creek				
477				
	start	39.680891264864	-87.9341744320393	EDGAR
	end	39.6581354970801	-87.8937110001233	EDGAK
Clark Branch				
483	etort	30 8111289403664	-87 8839288887749	EDGAR
	end	39.8226610039489	-87.8513747624001	EDGAR
Collison Branch				
439				
	start	40.2351860050982	-87.7725365689525	VERMILION
	end	40.2197161120333	-87.803155121171	VERMILION
Cottonwood Creek				
469	otort	20 2022657707204	88 2765033266003	CUMBERLAND
	start	39.2033037707304	-88.229342077034	CUMBERLAND
Crahannle Creek	ond	JJ.JI (<u>DI</u> J, 11)J, (00.2270 02077 0207	
452				
10,4	start	39.7057649552945	-87.5509615193818	EDGAR
	end	39.8065708276187	-87.6467768455628	EDGAR
Crooked Creek				
465			00.04400000741	
•	start	38.9817031629594	-88.000438923701	JASPER
Dear Creak	ena	37.0330407340713	-00.092000200007	JAOI LAC
Deer Creek				
405	start	39.7053403128076	-88.0850387247647	DOUGLAS
	end	39.7025679945443	-88.2058470030399	DOUGLAS
Donica Creek				
479				
	start	39.6453315324326	-87.9892294370803	COLES
	end	39.6172623271272	-87.9782640861296	COLES
Dudley Branch 475				

Page 33 of 37

•

Segment Name				
End Points		Latitude	Longitude	COUNTY
End Fonds	start	39 5115642227627	-88.0564563693231	COLES
	end	39.5068188298145	-88.043669581567	COLES
East Crooked Cre	ek			
287				
	start	39.0356467346919	-88.0923368283887	JASPER
	end	39.1659729856615	-88.0610310241876	JASPER
East Fork Big Cr	eek			
458				
	start	39.436126036547	-87.7023848396263	CLARK
	end	39.54/1103/80/13	-87.700040304497	EDGAR
Embarras River				
460		20.0140620762499	97 002 4709026233	TACDED
	start	38.9148028702488	-87.9634796030322	DOUGLAS
Easth on Croak	çnu	33./101100/4550/	-00.0033274040712	DOOODIIG
reuiner Ureek				
434	start	40 1172818042134	-87.8342855159987	VERMILION
	end	40.1416543211304	-87.8399367268356	VERMILION
Greasy Creek	0110			
480				
	start	39.6325904592965	-88.0822649850404	COLES
	end	39.6182255297223	-88.1320998047424	COLES
Hickory Creek				
464				
	start	38.9714278418083	-87.972721454297	JASPER
	end	38.99191464315	-87.989292523907	JASPER
Hickory Grove Ci	reek			
478				
	start	39.6581354970801	-87.8937116601235	EDGAR
	end	39.5712873627184	-87.8825676201308	EDGAR
Hurricane Creek				
470		44 4444	00 1544740/00/52	
	start	39.288900/8165/8	-88.1544/49600653	COMBERLAND
Tour Law Canada	ena	39.3/9311629/336	-00.0006206706702	COLLS
Joraan Creek				
433	ctort	40 0704151102358	-87 7000673700556	VERMILION
	end	40.0588834821927	-87.8360461636444	VERMILION
443	¢11¢	101000000000000000000000000000000000000		
	start	40.3360527696651	-87.6231745570584	VERMILION
	end	40.3553265493525	-87.5278198412106	VERMILION
Kickapoo Creek				
47 1				
	start	39.4379695819539	-88.1681483569976	COLES
	end	39.4597583113682	-88.2917593820249	COLES
Knights Branch				
438				
	start	40.2763499940372	-87.7961879249888	VERMILION
	end	40.2520446574291	-87.8536556533235	VERMILION
Little Embarras I	aver			
476		20 6726261 600 440	00 0776000440767	COLES
	start	30 680801264864	-00.0720007440302 _87 9341744320303	FDGAR
	end	57.000071204004	-01.7541144340333	DUGAN

BASIN NAME

Page 34 of 37

٠

,

Segment Name Segment No.		T - CA - 1-	T 1-	
End Points		Latitude	Longitude	COUNTY
Little Vermilion I	River			
426				
	start	39.9463345271443	-87.5536756201362	VERMILION
	end	39.9593741043792	-87.6447473681732	VERMILION
Middle Branch				
442				
	start	40.3096675860339	-87.6376716065503	VERMILION
	end	40.417753327133	-87.5275419211693	VERMILION
Middle Fork Veri	milion	River		
428				
	start	40.1035656386662	-87.7169902321166	VERMILION
	end	40.4043343147541	-88.0191381621282	FORD
Mill Creek				
487				
407	start	39,2394256838229	-87.6762126527038	CLARK
	end	39.3566749194214	-87.7425049309309	CLARK
Muddy Crook	Und			
242				
242	otort	20 1001205600225	88 2200155520877	CUMPERIANC
	end	30 2033657707304	-88 2765033266093	CUMBERIAND
Nouth Fout of Fu	u h anna	D :	-00.2705055200075	COMBERENI
North Fork of En	noarra	is River		
461		20.0140/207/2490	07 000 470000 (000	140000
	start	38.9148628762488	-87.9834798036322	JASPEK
	ena	39.0924/49553/25	-8/.9/8403912801/	JASPER
North Fork Verm	ulion 1	River		
441				
	start	40.236054881277	-87.6293326109766	VERMILION
	end	40.5010729612407	-87.5261721834388	IROQUOIS
Panther Creek				
462				
	start	39.0924749553725	-87.9784039128617	JASPER
	end	39.184289386946	-88.0087906828419	CUMBERLAND
Polecat Creek				
474				
	start	39.5013303165832	-88.1055006912296	COLES
	end	39.5162859310237	-88.0338496162262	COLES
Rilev Creek				
477				
7/2	start	39 4712869216685	-88.2108945161318	COLES
	end	39 5116227820733	-88.2569469311765	COLES
Calt Fark	end	<i>59.511022,020,00</i>	00.2007 107011100	00220
429	_44	10 102565628666	87 71 600000001 166	VEDMILION
	start	40.1052020300002	-8/./109902321100	CUAMDAICN
455	ena	40.0308232483000	-88.0740380039073	CHAMPAION
400	_1	20 7426090214610	97 570010449770	EDCAR
	start	37.7422080214019	-0/.J/LY1Y448//L 97 5775969061296	EDGAR
	епа	27.0010473002144	-01.0100000110	BDUAK
Snake Creek				
454				
	start	39.7128111863363	-87.6415954465778	EDGAR
	end	39.7066978623237	-87.6543043306751	EDGAR
South Fork Brou 453	illetts	Creek		

BASIN NAME

Page 35 of 37

ī

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
	start end	39.7256495590209 39.7319449005729	-87.6437626049444 -87.6951881181821	EDGAR EDGAR
Stony Creek				
431				
	start	40.0943454186494	-87.8170769835194	VERMILION
Swaan Cuash	ena	40.1548847804725	-87.8840003394108	VERMILION
Sugar Creek				
430	start	39 4838820536199	-87 5320762217325	FDGAR
	end	39.6298164781408	-87.6762882912482	EDGAR
Unnamed Tributa	irv of	Big Creek		
459		C		
	start	39.5047911835054	-87.7121475341945	EDGAR
	end	39.5692784693864	-87.7194139533441	EDGAR
Unnamed Tributa	iry of	Brouilletts Creek		
451		20 707 / 40071 62 4	07 7170550101463	FRAM
	start	39.797449971524	-87.7758036067074	EDGAR
Unnamed Tribute	enu An an	Bruch Fork	-07.7730030307074	EDGAR
Ago	ay of	Diusny Pork		
702	start	39.7340344129883	-88.0771406153965	DOUGLAS
	end	39.802586616189	-88.0753634663247	DOUGLAS
Unnamed Tributa	ry of	Deer Creek		
486	5 5			
	start	39.7102184848625	-88.1385435180688	DOUGLAS
	end	39.678866903649	-88.1425332064637	DOUGLAS
Unnamed Tributa	ry of	Embarras River		
467				
	start	38.9934159067144	-88.129258689394	JASPER
Inway of Tuiketa	enu A	59.0054/25455126	-88.1210073378103	JASPER
Unnumea Irivuia 191	ry oj	Greasy Creek		
101	start	39.6182255297223	-88.1320998047424	COLES
	end	39.621059195964	-88.1538483534688	COLES
Unnamed Tributa	ry of.	Hickory Creek		
210		•		
	start	38.99191464315	-87.989292523907	JASPER
	end	39.0117394234421	-87.9896104862878	JASPER
Unnamed Tributa	ry of I	Middle Fork Vern	nilion River	
434				
	start	40.3478602982847	-87.9479087836067	CHAMPAIGN
Unnamad Tributa		40.3408933003308	-07.9003902331490	CHAMPAIGN
	<i>iy 0</i> j 1	Stony Creek		
064	start	40,1548847864725	-87 8840063394108	VERMILIÓN
	end	40.1706704853124	-87.9033972187304	VERMILION
Unnamed Tributa	rv or	North Fork of the	Vermilion River	
444	.,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	start	40.3553498759616	-87.6852979017427	VERMILION
	end	40.3665727663496	-87.733231992072	VERMILION
445				
	start	40.483638183168	-87.5751075709757	VERMILION
	end	40.4930209841439	-87.5771 <i>3</i> 91859822	IKOQUOIS

.

March 31, 2006

Page 36 of 37

-

•

Segment Name				
Segment No.				
End Points		Latitude	Longitude	COUNTY
446				
	start	40.423223711311	-87.6788932053507	VERMILION
	end	40.4280461995299	-87.6895565256772	VERMILION
Vermilion River				
427				
	start	40.0116868805566	-87.5337540394346	VERMILION
	end	40.1035656386662	-87.7169902321166	VERMILION
Wabash River				
488				
	end	39.3034266238732	-87.605592332246	CLARK
West Crooked Cree	ek			
466				
	start	39.0356467346919	-88.0923368283887	JASPER
	end	39.0545759701349	-88.1009871944535	JASPER
West Fork Big Cre	ek			
19				
	start	39.436126036547	-87.7023848396263	CLARK
	end	39.5012337820195	-87.8003199656505	EDGAR
Willow Creek				
463				
	start	39.0191952007294	-87.9402449982878	CRAWFORD
	end	39.0529145507759	-87.9280073176635	CRAWFORD

.

March 31, 2006

.

٠

BASIN NAME

Page 37 of 37

Recommended Revisions to the

Illinois General Use Water-Quality Standard for Dissolved Oxygen

March 31, 2006

by

Illinois Department of Natural Resources

and

Illinois Environmental Protection Agency

Overview of recommended revisions to the Illinois water-quality standard for dissolved oxygen

In April 2004, the Illinois Association of Wastewater Agencies proposed revisions to the General Use water-quality standard for dissolved oxygen (In the matter of: Proposed Amendments to Dissolved Oxygen Standard, 35 Ill. Adm. Code 302.206, R-04-25). In response to this proposal, the Illinois Department of Natural Resources (Illinois DNR) and the Illinois Environmental Protection Agency (Illinois EPA) recommend alternative revisions of the dissolved oxygen standard. Illinois DNR and Illinois EPA believe that the current standard for Illinois General Use waters is too simplistic; it inadequately accounts for the varied dissolved oxygen requirements of aquatic life in these waters. The current standard also inadequately accounts for how dissolved oxygen concentrations vary across a broad range of natural aquatic conditions throughout Illinois.

To replace the current General Use dissolved oxygen standard, Illinois DNR and Illinois EPA recommend two levels of standards, each level applying to one of two sets of waters in Illinois. One level applies to the large majority of General Use waters and is designed to ensure sufficient oxygen concentrations for the aquatic life therein. Another higher level of standards applies to a small, selected subset of General Use waters; these thresholds are designed to protect Illinois' most sensitive types and life stages of aquatic life that require relatively higher dissolved oxygen concentrations. Illinois DNR and Illinois EPA identify about 8% of the length of Illinois' 71,394 stream miles as requiring these higher dissolved oxygen levels (based on stream miles in the U.S. Geological Survey National Hydrography Dataset; see internet website: //nhd.usgs.gov/). The

recommended numeric standards for each of these two sets of General Use waters are based primarily on the U.S. Environmental Protection Agency (USEPA) national-criteria document, "Ambient Aquatic Life Water Quality Criteria for Dissolved Oxygen (Freshwater)" (USEPA 1986). Illinois DNR and Illinois EPA use this document as a foundation from which to interpret and incorporate more-recent information specifically applicable to the dissolved oxygen needs of aquatic life in Illinois waters.

The revisions to the current dissolved oxygen standard proposed by the Illinois Association of Wastewater Agencies (IAWA) are also based on the USEPA (1986) national-criteria document; however, Illinois DNR's and Illinois EPA's recommended revisions differ from those of IAWA in the following primary ways (Figure 1):

- Illinois DNR and Illinois EPA define two levels of numeric standards, with a higher level that provides enhanced protection in waters that have organisms especially sensitive to low dissolved oxygen levels. IAWA's proposed revisions make no such distinction.
- 2) Illinois DNR and Illinois EPA provide a narrative standard for waters that naturally cannot achieve consistently higher levels of dissolved oxygen, e.g., wetlands, sloughs, river backwaters, and lakes and reservoirs below the thermocline. IAWA's proposed dissolved oxygen standards apply universally to all General Use waters (In the matter of: Proposed <u>Amendments to Dissolved Oxygen Standard</u>, 35 Ill. Adm. Code 302.206, R-04-25, Exhibit 1, April 19, 2004).

- 3) Illinois DNR and Illinois EPA recommend a longer period for the protection of early life stages of fish: March through July. IAWA's early-life-stage period is March through June.
- 4) Consistent with USEPA (1986), Illinois DNR and Illinois EPA include a 30-day chronic dissolved oxygen standard, i.e., daily mean averaged over 30 days. IAWA does not include a 30-day chronic standard.

Dissolved Oxygen Standards Recommended by Illinois DNR/EPA

General Use Waters

	Level 1 (enh	nanced protection)	Level 2			
-	Early Life Sta Present (March – July)	ages of Fish: Absent (August – Feb.)	Early Life Sta Present (March – July)	iges of Fish: Absent (August – Feb.)		
- Daily Minimum	5.0	4.0	5.0	3.5		
7-day Mean of Daily Minima		4.5	í	4.0		
7-day Mean of Daily Means	6.25	<u>.</u>	6.0			
30-day Mean of Daily Means		6.0		5.5		

¹ Wetlands, sloughs, river backwaters, lakes below thermocline, etc. are protected by a narrative standard.

Dissolved Oxygen Standards Proposed by IAWA

the second s
· 如此不可能的。"这些话,是一些话,是一种不能能。"你不能是一个事实。"
at the of a to an at the second se
· 영화 밝힌 없습니다. 그 요즘 가슴에 참가 가 가 가 가 가 다 가 다 가 가 가 가 가 가 가 가 가 가
이는 것은 것은 것은 것은 것은 것은 것을 가지 않는 것이 있다. 이상 것이 있는
后。""我这些,你你是你们还是我们的意思,就是我们都是了了?"我说道:"你们不能。"Final Haves
승규가 가슴 승규는 것 같아요. 것은 것은 것은 방법에 가장 가지 않는 것을 많이 못했다. 가는 것은 것을 알았는
문화 등에서 100km 이상을 가지 않으려요. 전쟁적 200km 등 100km 등 100km 등 200km 등 2
말했는데 요즘 것이 가지 않는 것을 해 없는 것 같아. 것이 않는 것이 같아.
きょうしん かいしょう ないたい 正義権 気感的な あま
영향 동안 가지 않는 것 같은 것 같은 것 같은 것 같아요. 그 것이는 것 집에서 적인적인 제공적인
이 나가는 바로 유가하는 것 같은 것이 나라 방법을 변약하는 것이다.
이 것 같아요. 이 지원에 가지 않는 것 같아요. 이 집 않는 것 같아요. 이 것 같아요.
이 가지 않는 것은 것이 가지 않는 것이 같아요. 이 것이 같아요. 이 것 같아.
Specific and the strange of the second se Second second s Second second seco
「「「「「「」」」、「「」」、「」、「」、「」、「」、「」、「」、「」、「」、「
とうない みんしか ひょうちょう ないがく かかかがく
the second s

	Early Life Stages of Fish:			
	Present (March – June)	Absent (July – Feb.)		
Daily Minimum	5.0	3.5		
7-day Mean of Daily Minima		4.0		
7-day Mean of Daily Means	6.0	·		
30-day Mean of Daily Means				

Figure 1. Comparison between dissolved oxygen standards recommended by Illinois DNR/Illinois EPA and those proposed by IAWA.

USEPA's water-quality criteria for dissolved oxygen provide a sound, scientific foundation

Illinois DNR and Illinois EPA primarily base the recommended revisions to dissolved oxygen standards on information in USEPA (1986), which provides a sound, scientifically based foundation. The USEPA (1986) criteria for dissolved oxygen address three critical elements not addressed by the current Illinois standard. First, the USEPA criteria account for differences in sensitivity to low dissolved oxygen among types of fishes or macroinvertebrates. Second, the USEPA criteria account for differences in sensitivity among life stages of fish. Third, the USEPA criteria provide practical considerations that account for occasional natural occurrences of low dissolved oxygen. Incorporation of these elements greatly improves the utility of the Illinois standards.

Illinois DNR and Illinois EPA recognize some limitations in using the information in USEPA (1986) to revise Illinois dissolved oxygen standards; therefore, these recommended standards revisions are supported further by more-recent information that pertains specifically to aquatic life in Illinois waters. In general, to determine how the USEPA (1986) criteria apply in Illinois, Illinois DNR and Illinois EPA address two primary questions:

 Are the USEPA (1986) dissolved oxygen criteria sufficient for protecting the most sensitive (to low dissolved oxygen) of the numerous types and life stages of fish and macroinvertebrates that live in Illinois waters? 2) If not, then what alternative dissolved oxygen criteria would ensure sufficient protection and in which Illinois waters should these higher criteria apply?

How the basic structure of USEPA criteria for dissolved oxygen applies to Illinois dissolved oxygen standards

USEPA (1986) accounts for differences in dissolved oxygen sensitivity among types of fish or macroinvertebrates by providing two different levels of dissolved oxygen criteria, labeled as: "coldwater" vs. "warmwater". USEPA (1986) states, "Criteria for coldwater fish are intended to apply to waters containing a population of one or more species in the family Salmonidae (Bailey et al. 1970) or to waters containing other coldwater or coolwater fish deemed by the user to be closer to salmonids in sensitivity than to most warmwater species... The warmwater criteria are necessary to protect early life stages of warmwater fish as sensitive as channel catfish and to protect other life stages of fish as sensitive as largemouth bass" (p. 33; emphasis added). These limits on the applicability of USEPA's "warmwater" criteria provide the primary basis for much of the discussion that follows in this document. Additional to differences among species, USEPA (1986) accounts for differences in dissolved oxygen sensitivity based on a fish's life stage: early life stages vs. other. Overall, USEPA's (1986) approach results in four sets of dissolved oxygen criteria (Table 1, columns 4, 5, 8, and 9).

Based on the information available at the time, USEPA's four categories of dissolved oxygen criteria represented a practicable way of accounting for how different types and life stages of

aquatic life were known to differ in their sensitivity to low dissolved oxygen. Illinois' current water-quality standard for dissolved oxygen was developed and adopted before 1986 (Illinois Pollution Control Board 1972); it does not account for these differences. Therefore, revising Illinois' current dissolved oxygen standard begins with evaluating how the USEPA (1986) criteria apply to Illinois waters. By carefully considering the strengths and limitations of USEPA's (1986) dissolved oxygen criteria, Illinois DNR and Illinois EPA believe that these nationally recommended criteria can be used as the basic framework for determining the most-appropriate standards for protecting aquatic life in Illinois. Illinois DNR and Illinois EPA build on this framework by incorporating information that has become available since 1986 and that pertains more directly to the many types of fish and macroinvertebrates that inhabit Illinois waters.

Recommended dissolved oxygen standards to protect aquatic life in Illinois

For the large majority of Illinois General Use waters (Level 2 in Figure 1), the dissolved oxygen standards recommended by Illinois DNR and Illinois EPA reflect the USEPA (1986) criteria (Table 1). For a small subset of General Use waters (Level 1 in Figure 1), Illinois DNR and Illinois EPA recommend the following. Based on the sensitivities of Illinois fishes and macroinvertebrates to low dissolved oxygen, Illinois DNR and Illinois EPA recommend a "daily minimum" (acute) dissolved oxygen standard of 4.0 mg/l to protect Illinois aquatic life that are most sensitive to low dissolved oxygen when early life stages of fish are absent (Table 1, column 7). This threshold concentration is based primarily on protecting the most-sensitive macroinvertebrates and is consistent with USEPA's (1986) recommendation. "In summarizing

the state of knowledge regarding the relative sensitivity of fish and invertebrates to low dissolved oxygen, it seems that some species of insects and other crustaceans are killed at concentrations survived by all species of fish tested. Thus, while most fish will survive exposure to 3 mg/l, many species of invertebrates are killed by concentrations as high as 4 mg/l^o (USEPA 1986, p. 23).

For the same small subset of General Use waters (Level 1 in Figure 1), Table 1 (columns 6 and 7) shows Illinois DNR's and Illinois EPA's recommendations for chronic dissolved oxygen standards. Using fish-species' relative chronic sensitivities (Rankin 2004) and some limited information for macroinvertebrates—but lacking specific information about chronic thresholds for the large majority of Illinois organisms—Illinois DNR and Illinois EPA recommend chronic standards that represent a practical balance. This balance primarily reflects that several Illinois fish species are intermediate in chronic sensitivity between sensitive salmonids (i.e., trout, salmon) and the two less sensitive species used as benchmarks for the USEPA (1986) "warmwater" criteria (i.e., largemouth bass, channel catfish). Consequently, Illinois DNR and Illinois EPA simply select dissolved oxygen concentrations halfway between the USEPA (1986) "coldwater" and "warmwater" chronic levels. For example, for the period when early life stages are absent, the USEPA "coldwater" threshold for the 7-day mean of daily minima is 5.0 mg/l, and the analogous "warmwater" threshold is 4.0 mg/l. Illinois DNR and Illinois EPA select the midpoint, 4.5 mg/l (Table 1, column 7), as the threshold for "intermediate" waters—which were selected based on the approach explained later in this document.

Table 1. Allowable minimum concentrations of dissolved oxygen for the protection of aquatic life. Thresholds shown are those recommended either by USEPA (1986) or jointly by Illinois DNR and Illinois EPA. Different minima apply for each of three types of aquatic habitat, based on the relative sensitivity to low dissolved oxygen of the animal life therein: "coldwater" vs. intermediate vs. "warmwater". For each type of habitat, minima are also stratified by time period, based on the presence of early life stages of fish. For particular situations not indicated in the table (e.g., manipulable discharges), alternative USEPA minima may apply (see USEPA [1986] pp. 34 and 37-38).

Dissolved Oxygen Measure	Type of Dissolved Oxygen Measure	Recom- mended By	Habitats of Organisms More Sensitive to Low Dissolved Oxygen ("Coldwater")		Illinois General Use Waters			
					Habitats of Organisms Intermediate in Sensitivity to Low Dissolved Oxygen		Habitats of Organisms Less Sensitive to Low Dissolved Oxygen ("Warmwater")	
			Early Life St Present	ages of Fish: Absent	Early Life St Present (March - July)	ages of Fish: Absent (August - Feb.)	Early Life St Present (March - July) ³	ages of Fish: Absent (August - Feb.) ³
Daily Minimum ¹	acute	USEPA	5.0 mg/l	4.0 mg/l		i en	5.0 mg/l	3.0 mg/l
		IDNR/ IEPA			5.0 mg/l	4.0 mg/l	5.0 mg/l	3.5 mg/l
Arithmetic Mean of Daily Minima, For a Contiguous 7-Day Period	chronic	USEPA		5.0 mg/l			nige of the second s	4.0 mg/l
		IDNR/ IEPA				4.5 mg/l	an an an Anna Anna Anna Anna An an Aighteann an Anna Anna Anna Anna Anna Anna An	4.0 mg/l
Arithmetic Mean of Daily Means ² , For a Contiguous 7-Day Period	chronic	USEPA	6.5 mg/l				6.0 mg/l	na na kata na kata na ka
		IDNR/ IEPA		n an	6.25 mg/l		6.0 mg/l	
Arithmetic Mean of Daily Means ² , For a Contiguous 30-Day Period	chronic	USĘPA		6.5 mg/l	n si Angela di Nganggangganggangganggangganggangganggan			5.5 mg/l
		IDNR/ IEPA			and an	6.0 mg/l		5.5 mg/l
(column 1)	(column 2)	(column 3)	(column 4)	(column 5)	(column 6)	(column 7)	(column 8)	(column 9)

¹ "Daily minimum" is the minimum dissolved oxygen concentration that occurs during a single calendar day.

² "Daily mean" is the arithmetic mean of dissolved oxygen concentrations measured in a single calendar day.

³ These bounds are recommended by Illinois DNR and Illinois EPA only; USEPA (1986) does not provide specific bounds for the presence vs. absence of early life stages.

Different types of Illinois fish and macroinvertebrates require different dissolved oxygen standards

Differences in dissolved oxygen requirements among types of Illinois stream fish

Illinois DNR and Illinois EPA believe that although USEPA's "warmwater" dissolved oxygen criteria (Table 1, columns 8 and 9) are appropriate for the large majority of Illinois waters, they provide insufficient protection for several species of Illinois stream fish that inhabit a small but significant proportion of Illinois streams. Because USEPA (1986) "warmwater" criteria are based on information for only a few tested "warmwater" fish species, they are limited to being protective only of fishes as sensitive as channel catfish (early life stages) or largemouth bass (other life stages). For Illinois waters, this limitation must be addressed and accounted for.

Over 160 fish species are known to inhabit Illinois streams (Smith 1979; Illinois Natural History Survey internet website: *www.inhs.uiuc.edu/cbd/ilspecies/fishsplist.html*); for a large majority of these species, absolute sensitivity to low dissolved oxygen remains unknown. As explained below, some Illinois stream-fish species have sensitivity between "coldwater" species (e.g., trout, salmon) and the two species that represent the threshold of protection provided by USEPA's (1986) "warmwater" criteria. For example, smallmouth bass inhabit Illinois streams and have been noted by USEPA (1986) as one of the most sensitive of the non-salmonid species tested. Because some Illinois fishes have sensitivity between that of salmonids and that of largemouth bass or channel catfish, it is reasonable to expect that some Illinois waters inhabited by these "intermediate" species would require dissolved oxygen standards higher than the USEPA (1986)

"warmwater" criteria but not as high as the "coldwater" criteria. USEPA (1986) clearly recognizes this potential need. "Some coolwater species may require more protection than that afforded by the other life stage criteria for warmwater fish and it may be desirable to protect sensitive coolwater species with the coldwater criteria. Many states have more stringent dissolved oxygen standards for cooler waters, waters that contain either salmonids, nonsalmonid coolwater fish, or the sensitive centrarchid, the smallmouth bass" (p. 33).

Illinois DNR and Illinois EPA identify 31 Illinois stream-fish species that require dissolved oxygen minima higher than the USEPA "warmwater" criteria (Table 2). This selection of sensitive fish species is based primarily on field-based rankings of species' sensitivities to low dissolved oxygen (Rankin 2004). Rankin (2004) used field data of about 90 fish species collected from hundreds of stream locations in Ohio to determine a relative ranking of sensitivity for each species. The rankings are based on relations between observed dissolved oxygen concentrations and the relative abundance of each fish species. These rankings provide useful "real-world" evidence of how the occurrence and abundance of fish at a site are related to dissolved oxygen concentrations. Because these relations are correlative, they do not provide absolute evidence that low dissolved oxygen caused low observed abundance. Nevertheless, considering the limited information available on specific sensitivities of each of Illinois' many stream-fish species, Illinois DNR and Illinois EPA believe that Rankin's (2004) results pertain especially well to Illinois because over 80 of the Ohio fish species also inhabit Illinois streams.

Rankin (2004) used weighted (by abundance) means of minimum dissolved oxygen concentrations to rank each fish species according to its relative sensitivity to low dissolved
oxygen. For each species, the weighted mean represents the typical daylight minimum dissolved oxygen concentration where the species tends to be most abundant. Rankin cautions against using these numeric values directly; rather, he advises that the relative rankings of the fish species are much more useful (personal communication on January 31, 2006 between Edward T. Rankin, Senior Research Associate, Center for Applied Bioassessment and Biocriteria, Columbus, Ohio; and Roy Smogor, Illinois Environmental Protection Agency, Springfield, Illinois). Using the relative dissolved oxygen sensitivities in Rankin (2004), Illinois DNR and Illinois EPA selected rock bass as a benchmark species. Namely, all species ranked as equally or more sensitive than rock bass were considered as candidates for a list of Illinois fish species that are more sensitive to low dissolved oxygen than channel catfish and largemouth bass and thus require dissolved oxygen minima higher than the USEPA (1986) "warmwater" criteria. Rankin (2004) indicates that rock bass are more sensitive to low dissolved oxygen than both channel catfish and largemouth bass. Illinois DNR fisheries biologists selected rock bass as the benchmark species because of its affinity to transitional warm/cool waters.

Of 35 Illinois candidate species indicated in Rankin (2004) as equally or more sensitive than rock bass, eleven were not selected for the list of Illinois sensitive species. Based on their experience with these fishes in Illinois streams, Illinois DNR fisheries biologists believe that these excluded species are not especially sensitive to low dissolved oxygen, relative to the other species considered.

One species (i.e., brook stickleback) indicated in Rankin (2004) as less sensitive than rock bass, is included in the list of sensitive Illinois fishes. Additionally, five species not addressed in

Rankin (2004) (i.e., northern brook lamprey, banded sculpin, longnose dace, Ozark minnow, and Iowa darter) were added to the list of sensitive fish species in Illinois. These six species are included based on their affinities to cool, well-oxygenated waters. USEPA (1986) acknowledges that "there is apparently enough anecdotal information to suggest that many coolwater species are more sensitive to dissolved oxygen depletion than are warmwater species" (p. 2) and therefore need incrementally higher protection for dissolved oxygen.

Common Name	Scientific Name	Family
American brook lamprey	Lampetra appendix	Petromyzontidae
Northern brook lamprey	Ichthyomyzon fossor	Petromyzontidae
51.1.1	· · · ·	~
Black redhorse	Moxostoma duquesnei	Catostomidae
Northern hog sucker	Hypentelium nigricans	Catostomidae
Silver redhorse	Moxostoma anisurum	Catostomidae
Rock bass	Ambloplites rupestris	Centrarchidae
Smallmouth bass	Micropterus dolomieu	Centrarchidae
Spotted bass	Micropterus punctulatus	Centrarchidae
Banded sculpin	Cottus carolinae	Cottidae
Mottled sculpin	Cottus bairdi	Cottidae
Disaya abub	Ibshanaia amblana	Comminidae
Digwowth shinon	Notropic devention	Cyprinidae
Bigmoun sinner	Notropis aorsaits	Cyprinidae
Gamman shinan	Kninichinys atratulus	Cyprinidae
Common sniner	Luxinus cornutus	
Gravel chub	Erimysiax x-punciatus	Cyprindae
Hornynead chub	Nocomis biguitatus	Cyprinidae
Longnose dace	Khinichthys cataractae	Cyprinidae
Ozark minnow	Notropis nubilus	Cyprinidae
River chub	Nocomis micropogon	Cyprinidae
Rosyface shiner	Notropis rubellus	Cyprinidae
Southern redbelly dace	Phoxinus erythrogaster	Cyprinidae
Steelcolor shiner	Cyprinella whipplei	Cyprinidae
Brook stickleback	Culaea inconstans	Gasterosteidae
Brindled madtom	Noturus miurus	Ictaluridae
Stonecat	Noturus flavus	Ictaluridae
Banded darter	Etheostoma zonale	Percidae
Fantail darter	Etheostoma flabellare	Percidae
Greenside darter	Etheostoma blennioides	Percidae
Iowa darter	Etheostoma exile	Percidae
Rainbow darter	Etheostoma caeruleum	Percidae
Slenderhead darter	Percina phoxocephala	Percidae

,

Table 2. Illinois stream fishes most sensitive to low dissolved oxygen.

Differences in dissolved oxygen requirements among types of Illinois stream macroinvertebrates (e.g., insects, crayfish, worms, snails, mussels)

Similar to the situation for Illinois fishes, although USEPA's (1986) "warmwater" dissolved oxygen criteria are appropriate for the large majority of Illinois waters, they provide insufficient protection for several types of aquatic macroinvertebrates that inhabit a small but significant proportion of Illinois streams. In developing their criteria, USEPA (1986) relied primarily on only two studies of relatively few types of insects from streams in Montana, Utah, and Minnesota. A recent summary of the scientific literature on the sensitivity of stream macroinvertbrates to low dissolved oxygen indicates that specific information remains very limited (Connolly et al. 2004). This relative lack of information is surprising given the longstanding, widespread recognition of macroinvertebrates as useful indicators of deleterious human impacts on dissolved oxygen levels in surface waters (Connolly et al. 2004). Recognizing these limitations, USEPA (1986) qualified their recommendations accordingly. "Few appropriate data are available on the effects of reduced dissolved oxygen on freshwater invertebrates. However, historical consensus states that, if all life stages of fish are protected, the invertebrate communities, although not necessarily unchanged, should be adequately protected. This is a generalization to which there may be exceptions of environmental significance. Acutely lethal concentrations of dissolved oxygen appear to be higher for many aquatic insects than for fish" (USEPA 1986, p. 29).

Despite the predominance of fish-based thresholds in the USEPA (1986) dissolved oxygen criteria, one part of these criteria clearly recognizes greater sensitivity of some

macroinvertebrates compared to fish. Namely, the "coldwater" daily minimum is designed specifically to protect sensitive macroinvertebrates (4.0 mg/l; Table 1, column 5). "Although the acute lethal limit for salmonids is at or below 3 mg/l, the coldwater minimum has been established at 4 mg/l because a significant proportion of the insect species common to salmonid habitats are less tolerant of acute exposures to low dissolved oxygen than are salmonids" (USEPA 1986, p. 33). As explained below, some Illinois macroinvertebrates are as sensitive to low dissolved oxygen as those on which this USEPA (1986) "coldwater" threshold was based; therefore, a daily minimum of 4.0 mg/l is appropriate for Illinois waters inhabited by these types.

Illinois DNR and Illinois EPA considered various information on the dissolved oxygen sensitivities of Illinois stream macroinvertebrates. A "macroinvertebrate" is defined as any invertebrate of a body size that would prevent it from passing through a sieve with mesh size of 595 μ m (i.e., U.S. Standard No.30). Typical Illinois stream macroinvertebrates include insects, crayfish, scuds, sowbugs, worms, leeches, flatworms, snails, and mussels. Mussels are addressed separately later in this document.

Illinois DNR and Illinois EPA used the Illinois EPA Macroinvertebrate Tolerance List to determine relative sensitivity, to low dissolved oxygen, of Illinois stream macroinvertebrates (excluding mussels). This tolerance list reflects a long history of working with macroinvertebrates in Illinois to evaluate the effects and extent of organic pollution. The Illinois Department of Public Health began classifying macroinvertebrates found in Illinois streams relative to their tolerance to organic wastes in the 1950s. Macroinvertebrates were placed in one of three categories: tolerant, various, or intolerant, based on the stream conditions where they

occurred. The composition of the macroinvertebrate community was then used to determine whether or not a water was polluted. Macroinvertebrates classified as intolerant were considered to require "...*ideal conditions in respect to dissolved oxygen, biochemical oxygen demand*..." (p. 1 in "A Method of Cataloging Stream Bottom Organisms in Respect to Their Pollutional Tolerance" by Robert H. Shiffman, Illinois Department of Public Health, 1954). Weber (1973) went on to define intolerant macroinvertebrates as, "Organisms that are not found in association with even moderate levels of organic contaminants and are generally intolerant of even moderate reductions in dissolved oxygen" (p. 18). In Wisconsin, Hilsenhoff (1977) began assigning numeric values of tolerance to organic pollution to macroinvertebrates. A "biotic index" was then calculated reflecting the weighted average of tolerance values at a stream site. Hilsenhoff (1977) found that of nine physicochemical variables tested, dissolved oxygen had the most significant correlation with the macroinvertebrate biotic index that was based on tolerance values.

The Illinois EPA Macroinvertebrate Tolerance List currently reflects the system utilized by Hilsenhoff. Pollution tolerance ratings of macroinvertebrates on the list range from 0 to 11; with a rating of zero assigned to taxa found only in unaltered streams of high water quality, and a rating of 11 assigned to taxa known to occur in severely polluted or disturbed streams. Intermediate ratings are assigned based on an organism's relative degree of tolerance or intolerance to pollution. Although information on the relative tolerance of an organism to other pollutants such as metals toxicity or pH are considered, organic pollution remains the foundation of the rating. The Illinois EPA Macroinvertebrate Tolerance List does not indicate acute or

chronic toxicity, but does provide a relative ranking of macroinvertebrate sensitivity to primarily dissolved oxygen.

Some types of Illinois macroinvertebrates require dissolved oxygen minima higher than the "warmwater" criteria proposed by USEPA. USEPA (1986; Table 6, p. 22) includes three macroinvertebrate taxa found in Illinois that require 3.5 mg/l dissolved oxygen or higher to survive: *Baetisca laurentina, Hydropsyche* sp., and *Neophylax* sp. Additionally, Connolly et. al. (2004) found sub-lethal effects on mayflies (order Ephemeroptera) when dissolved oxygen was in the 25-35% saturation range, which translates to a dissolved oxygen concentration of about 3.0 mg/l at the temperatures studied. The sub-lethal effects were related to the failure of some mayflies to emerge into the adult stage; thus, dissolved oxygen concentrations that drop to 3.0 mg/l could potentially hamper the sustainability of mayfly populations. Based on this information, Illinois DNR and Illinois EPA believe that some Illinois macroinvertebrate taxa require higher dissolved oxygen minima than the USEPA "warmwater" criteria.

However, given the large number and variety of macroinvertebrates in Illinois and the limited references in the literature to specific dissolved oxygen requirements to specific taxa, identifying individual taxa that might require higher dissolved oxygen than the "warmwater" criteria is problematic. Consensus of Illinois EPA biologists was that macroinvertebrates with tolerance ratings less than or equal to 3.5 would require dissolved oxygen concentrations higher than the "warmwater" criteria (note the tolerance rating does not correspond to a dissolved oxygen concentration).

Illinois DNR and Illinois EPA identify 83 macroinvertebrate taxa that have tolerance ratings of 3.5 or less (Table 3). An initial list of dissolved oxygen sensitive taxa was generated by querying the Illinois EPA BIOS database for taxa with a tolerance equal to or less than 3.5. The initial screening list of sensitive macroinvertebrate taxa (n = 165) was distributed and reviewed by Illinois EPA biologists and Illinois DNR staff. Mussels (family Unionidae) were excluded from the initial list since they are collected sporadically and were being evaluated separately by Illinois DNR staff. Taxa identified at the family level were then eliminated as being too general, as were a few Dipteran taxa that had limited distributions and occurred primarily at degraded sites. The final list of taxa was based on those found in Illinois EPA macroinvertebrate samples collected from wadable streams between 2001 and 2004 (n = 399 samples). Table 3 shows the sensitive macroinvertebrate taxa that actually occurred in the samples used. This list does not represent all Illinois taxa with tolerance ratings of 3.5 or less; rather, it only includes the ones most likely to be collected during Illinois EPA's annual sampling period, June 1 through October 15. Some Illinois sensitive taxa are not well represented in the list, e.g., several stonefly taxa (order Plecoptera), because their life cycles do not correspond with the presence of life stages amenable to capture during late spring to early autumn.

Like other aquatic macroinvertebrates, mussel species vary in their sensitivity to dissolved oxygen. Based on the limited available scientific information, Illinois DNR identifies two species, the Rainbow (*Villosa iris*) and the Elephantear (*Elliptio crassidens*) as especially sensitive to low dissolved oxygen and thus requiring minima higher than the USEPA (1986) "warmwater" criteria. Two studies directly address dissolved oxygen sensitivity of these two species (Chen et al. 2001; Johnson et al. 2001). Chen et al. (2001) found that "*Villosa iris* [and

one other species]..., which generally live in well oxygenated stream and river riffles... exhibited the poorest ability to regulate OC [oxygen consumption] under conditions of low oxygen availability" (p. 212). The authors also state, "...for <u>V. iris</u>, DO [dissolved oxygen] should probably be higher than 6 mg l⁻¹ [mg/l] to ensure that aerobic metabolism remains relatively unchanged" (p. 214). Dissolved oxygen requirements of *Elliptio crassidens* were investigated by Johnson et al. (2001), who report that this mussel species had one of the highest mortality rates (82%) of the species studied when exposed to dissolved oxygen concentrations below 5 mg/l.

Scientific Name	Tolerance Rating	Scientific Name (cont.)	Tolerance Rating (cont.)	Scientific Name (cont.)	Tolerance Rating (cont.)
Amphipoda		Hetaerina sp.	3	Glossosoma sp.	3.5
Gammarus sp.	3	Hetaerina americana	3	Helicopsyche borealis	2
Gammarus fasciatus	3	Hetaerina titia	3	Hydroptila sp.	2
Gammarus pseudolimnaeus	3	Macromia sp.	3	Nectopsyche sp.	3
		Macromia illinoiensis	3	Nectopsyche candida	3
Ephemeroptera (mayflies)		Macromia taeniolata	3	Nectopsyche diarina	3
Baetis tricaudatus	1	Erpetogomphus sp.	2	Nectopsyche exquisita	3
Baetisca bajkovi	3	Nasiaeschna pentacantha	2	Neureclipsis sp.	3
Baetisca sp.	3	Neurocordulia sp.	3	Nyctiophylax sp.	1
Brachycercus sp.	3	Neurocordulia molesta	3	Polycentropus sp.	3
Centroptilum sp.	2	Ophiogomphus sp.	2	Ptilostomis sp.	3
Choroterpes sp.	2	Plauditus sp.	3	Pycnopsyche sp.	3
Ephemera simulans	3	Somatochlora sp.	1	Triaenodes sp.	3
Ephoron sp.	2				
Ephoron album	2	Plecoptera (stoneflies)			
Ephoron leukon	2	Acroneuria sp.	1	Coleoptera (beetles)	
Heptagenia flavescens	2	Neoperla sp.	1	Ancyronyx variegata	2
Heptagenia hebe	3	Pteronarcys sp.	2	Macronychus glabratus	2
Heptagenia perfida	1				
Isonychia sp.	3	Megaloptera		Diptera (flies)	
Leucrocuta sp.	3	Corydalus cornutus	3	Corynoneura sp.	2
Leucrocuta hebe	3	Nigronia sp.	2	Limonia sp.	3
Leucrocuta maculipennis	3	Nigronia serricornis	2	Meropelopia sp.	3
Nixe sp.	3			Nilothauma sp.	3
Nixe perfida	1	Neuroptera		Paratendipes sp.	3
Paraleptophlebia sp.	2	Sisyra sp.	1	Pentaneura sp.	3
Stenonema ares	3			<i>Rheopelopia</i> sp.	3
Stenonema mediopunctatum	2	Trichoptera (caddisflies)		Robackia sp.	3
Stenonema pulchellum	3	Agraylea sp.	2	Stempellina sp.	2
		Brachycentrus numerosus	1	Stempellinella sp.	2
Odonata (dragon/damsel)		Ceraclea sp.	3	Stenochironomus sp.	3
Basiaeschna janata	2	Ceraclea maculata	3	<i>Thienemaniella</i> sp.	2
Boyeria sp.	3	Chimarra sp.	3	Thienemaniella xena	2
Boyeria vinosa	3	Chimarra obscura	3		

Table 3. Illinois macroinvertebrates most sensitive to low dissolved oxygen (i.e., tolerance rating \leq 3.5) and occurring in Illinois EPA stream collections in 2001 through 2004. Mussels are excluded. The abbreviation "sp." means unspecified species.

Difficulties in interpreting critical thresholds of dissolved oxygen for aquatic life

Difficulties exist in determining meaningful thresholds to serve as ambient water-quality standards for dissolved oxygen. To account for these difficulties, Illinois DNR and Illinois EPA focus on relative rankings—rather than reported numeric thresholds—of dissolved oxygen sensitivity as the most valid and useful approach to determine which types of Illinois fish or macroinvertebrates require dissolved oxygen minima higher than the USEPA (1986) "warmwater" criteria. For fish, Illinois DNR and Illinois EPA rely primarily on field-based relations between dissolved oxygen and fish abundance (Rankin 2004) because traditional experimental information on dissolved oxygen sensitivity is lacking for many Illinois fish species. Moreover, particularly for non-toxic substances like dissolved oxygen, sole reliance on laboratory-based acute thresholds is not recommended. For example, in a laboratory-based study of stream-fish species' acute sensitivities to low dissolved oxygen, Smale and Rabeni (1995) caution, "Considerable differences have been found between laboratory tolerance values and lethal conditions in natural situations (Moore 1942; Davis 1975). It may not be appropriate to use laboratory measurements to predict specific, numerical values of either hypoxia or 'hyperthermia that would be lethal to fish in the wild' (p. 699). Other scientists have long recognized this difficulty in applying laboratory-based thresholds of low dissolved oxygen as water-quality standards intended to protect fish in their natural habitats (Aquatic Life Advisory Committee of the Ohio River Valley Water Sanitation Commission 1956; Davis et al. 1979; USEPA 1986). Smale and Rabeni (1995) further state, "The complexity of environmental challenges faced by fish in natural situations does not inspire confidence in the applicability of

22

apparently simplistic and reductionist laboratory tolerance data... However, even laboratory measurements that are too simplistic to precisely predict absolute values of temperature or dissolved oxygen levels that are limiting to fish in natural environments may still be used in a relative manner to distinguish tolerant from sensitive species" (p. 711). These caveats also pertain to analogous macroinvertebrate studies (e.g., Davis 1975; USEPA 1986; Connolly et al. 2004). USEPA's (1986) national-criteria document for dissolved oxygen carefully considers some of these potential shortcomings. Illinois DNR's and Illinois EPA's approach accounts for these concerns in light of similar cautions and suggestions in later studies.

Different life stages of Illinois fishes require different dissolved oxygen standards

The USEPA (1986) national criteria for dissolved oxygen recommendations are clear in the need to protect for early life stages of fish. The existing Illinois water quality standards for dissolved oxygen were adopted years prior to the USEPA 1986 national criteria, and therefore, do not specifically address these early life stages through a defined sensitive season. USEPA (1986) defines early life stages as, "Includes all embryonic and larval stages and juvenile forms to 30-days following hatching" (p. 34).

Available science behind fish spawning and fry development is essential data that must be studied to properly decide the most appropriate date in Illinois. It must be further recognized that other varying factors in any given year (weather conditions, stream flow and temperature, etc.), will have significant local influence on spawning periods of Illinois stream fishes.

Illinois DNR and Illinois EPA recommend July 31 as the date separating the "early life stage present" from the "early life stage absent" periods. This is in contrast to the IAWA's recommended date of June 30.

In supporting IAWA's petition, Dr. Garvey provided summaries of some of the scientific data behind fish spawning and fry development in Illinois. Dr. Garvey further discusses spawning strategies in Illinois fish (see Exhibit #8, <u>Protracted Spawning in Stream Fishes - Implications for</u> <u>Proposed Dissolved Oxygen Standards</u>). Dr. Garvey concludes that whatever spawning occurs toward the end of the spawning period (in many cases these are the months of July and August) is largely unimportant to the well being of the species. He lists a number of factors that contribute to the low survival of late-spawned individuals including predation and lack of fitness for winter survival.

Fisheries scientists and natural-resource managers in Illinois DNR and Illinois EPA partially agree with Dr. Garvey's explanation of the relative insignificance of late spawning to the overall well being of fish species, as long as that date ensures the critical spawning periods have passed and the frequency of spawning failures early in the spawning period do not change from typical natural conditions. In years when early season spawning is not successful for any number of environmental reasons, the "late" season spawning activity may provide the only individuals recruited to the population in that year. Thus, the relative importance of the late season spawned fish in some years is much greater than in typical years when the majority of recruitment comes

from the early season spawned individuals.

Many of the fish species evaluated by Dr. Garvey are spring spawners. Illinois DNR and Illinois EPA fisheries scientists and resource managers believe that additional science and data for late spring and summer spawners are of critical interest when setting the cut-off date. Therefore, available literature for Illinois fishes that spawn in either late spring or primarily in summer has been further investigated.

Species considered to be late spring spawners (i.e., those that may spawn into late June) include channel catfish and smallmouth bass; these two species are important for recreational fishing in Illinois. Simon and Wallus (2003) stated that for channel catfish "*yolk-sac larvae and early juveniles were collected mid-May through August with peaks in June and July in the Tennessee and lower Ohio Rivers*" (p. 100). First-hand knowledge and field observations by Illinois DNR resource managers support Simon and Wallus (2003) conclusions. Additionally for smallmouth bass, spawning periods have been documented by Michigan DNR (2004) between late April and early July in Michigan. Simonson (2001) reports similar spawning periods from mid-May through June for smallmouth bass in Wisconsin. In Illinois, smallmouth bass spawn from mid-April through late June with the main spawning period in June (Smith 1979; Sallee et al. 1991). First-hand knowledge and field observations by Illinois DNR resource managers in northern Illinois streams support the spawning period findings of both Michigan DNR (2004) and Simonson (2001).

Illinois DNR and Illinois EPA relied on published text of the natural history of fishes from

Illinois (Smith 1979), Missouri (Pflieger 1997), Virginia (Jenkins and Burkhead 1994), Tennessee (Etnier and Starnes 1993), Wisconsin (Becker 1983) and Arkansas (Robison and Buchanan 1988) to identify fish with summer spawning periods. These data sources were used for species that are common to Illinois. A summary of the range of spawning periods compiled from these works is provided in Table 4. It is significant to note that two of the fish species with summer spawning periods, bigmouth shiner (Notropis dorsalis) and stonecat (Noturus flavus), have been identified by Illinois DNR and Illinois EPA fisheries scientists and resource managers as more-sensitive to low dissolved oxygen than most other Illinois stream-fish species. Spawning periods identified in Table 4 represent only the time of deposition and fertilization of eggs, and do not include the period of other early life stages of embryonic and fry development. The July 31 date recommended by Illinois DNR and Illinois EPA is highlighted in Table 4. In general, by July 31, all late spawning fish species will have a substantial majority of their spawning and fry development into dates when higher dissolved oxygen standards will be in effect. Even though some larvae will be present into August, Illinois fisheries managers believe the July 31 date should not be detrimental to the overall recruitment of a year class for fish species.

Based on the literature presented for late spring spawnings, summer spawners, and those fish species such as madtoms that can spawn over a wide period, Illinois DNR and Illinois EPA fisheries scientists and resource managers have concluded that an additional 30-day period is necessary to include the "summer spawners" and to protect early life stages of Illinois fish. While the IAWA proposed date of June 30 protects the majority of "spring" spawns, it neglects to include the spawning period of the "summer" spawners, and neglects to include a 30-day

period for protection of post-hatch embryonic and yolk-sac fry development. Illinois DNR and Illinois EPA fisheries scientists and resource managers judge that the proposed date of July 31 adequately protects fish eggs and fry and therefore demarcates the two most appropriate periods for dissolved oxygen water quality standards.

Table 4. Spawning periods of some Illinois stream fishes. Shaded lines represent spawning period of each species. "Spawning period" is the time of deposition and fertilization of eggs. "Spawning time" does not include the period of embryonic development and later. Vertical dark line at July 31 indicates the end of the early life stage period, as recommended by Illinois DNR and Illinois EPA. Spawning period is based on information in the following texts: Smith (1979), Becker (1983), Robison and Buchanan (1988), Etnier and Starnes (1993), Jenkins and Burkhead (1994), and Pflieger (1997).

Fish Name	Mar01-15	Mar16-31	Apr01-15	Apr16-30	May01-15	May16-31	Jun01-15	Jun16-30	Jul01-15	Jul16-31	Aug01-15	Aug16-31	Sep01-15	Sep16-30
Minnow Family]								
golden shiner														
southern redbelly dace								an a						
creek chub														-
homyhead chub									and Anglasis Anglasis					
river chub									-					
central stoneroller														
largescale stoneroller			1											
suckermouth minnow														
blacknose dace										anda di a				
longnose dace			۶·.											
silver chub											*			
speckled chub		•										1919 1919 1919		
central silvery minnow														
plains minnow														
brassy minnow		-												
cypress minnow														

Fish Name M	ar01-15	Mar16-31	Apr01-15	Apr16-30	May01-15	May16-31	Jun01-15	Jun16-30	Jul01-15	Jul16-31	Aug01-15	Aug16-31	Sep01-15	Sep16-30
striped shiner			· · · · ·											
common shiner					÷• ••••				a 			<u></u>		
redfin shiner													ļ	
rosefin shiner					م المراجع الم مراجع المراجع ال									
ribbon shiner		·												
spotfin shiner														
steelcolor shiner		-												
blacktail shiner														
red shiner												- <u>-</u>		
pugnose minnow														
fathead minnow										and the second secon		n an the second seco Second second second Second second	-	
bluntnose minnow		-												
bullhead minnow					. <u>1</u>	an an Anna Anna An Anna Anna Anna						n na sa	4	
pugnose shiner														
emerald shiner														
river shiner			÷.		· · · · ·									
bigeye shiner														
ghost shiner														
silverjaw minnow											4 1 1			
ironcolor shiner											· ·			
bigmouth shiner										**************************************			5	
blackchin shiner														
blacknose shiner	-											12.00 A		
spottail shiner											:			
sand shiner										n sing sing sing sing sing sing sing sin				
Ozark minnow			1											
rosyface shiner						tri styr y an o'r sy'r y				4	1			1
silverband shiner														

Fish Name	Mar01-15	Mar16-31	Apr01-15	Apr16-30	May01-15	May16-31	Jun01-15	Jun16-30	Jul01-15	Jul16-31	Aug01-15	Aug16-31	Sen01-15	Sen16-30
taillight shiner											B 00			Septere
weed shiner														
mimic shiner							,					وم تېروم مېښو و د م درگې د و		
bigeye chub												harring the state of the second		
Sucker Family				<u>.</u>				*						
river carnsucker												<u> </u>		
highfin carnsucker														
guillback					ata ata sa ata									
										a -				
Catfish Family														
channel catfish			· · · · ·										·	
flathead catfish							· · · · · · · · · · · · · · · · · · ·							
stonecat							j ji la sula 							<u>-</u>
tadpole madtom														<u></u>
freckled madtom							 							
slender madtom				· · · ·							·			_
northern madtom										ant an and the second				
											· · · -			
Sunfish & Bass Family												<u>-</u>		n
warmouth								·				·		
green sunfish											N. 1997			
bluegill											≥ಿತ. ರಿಜ್ಞಾನವ್ರಕ್ಷ			
longear sunfish														
orangespotted sunfish											l. <u> </u>			
pumpkinseed												~~		
										<u></u> .	en geroek en 17 op 2	·		
Killifishes,Topminnows, Mosquitofish, & Silversides									-					
banded killifish												an a		

Fish Name	Mar01-15	Mar16-31	Apr01-15	Apr16-30	May01-15	May16-31	Jun01-15	Jun16-30	Jul01-15	Jul16-31	Aug01-15	Aug16-31	Sep01-15	Sep16-30
northern studfish									ر مراجع کار معمد مارک	i constanti Secondo da la				
starhead topminnow														
blackstripe topminnow										in sa				
blackspotted topminnow			-											
mosquitofish									میں اندازی مرکز میں مرکز میں درمین	۵۰۰۰ ۱۹۹۹ - ۲۰۰۹ ۱۹۹۹ - ۲۰۰۹ - ۲۰۰۹ - ۲۰۰۹				
brook silverside														
inland silverside			-											
Perch & Darter Family														
western sand darter														

Natural variability of dissolved oxygen through time and across locations in Illinois requires practical application of standards

Like USEPA (1986) criteria, the dissolved oxygen standards recommended by Illinois DNR and Illinois EPA (Table 1, columns 6 - 9) include absolute, instantaneous thresholds called "daily minima". This type of acute water-quality standard reflects an unrealistic, idealized expectation. In reality, under some natural conditions, dissolved oxygen concentrations are likely to drop to levels normally expected to be acutely harmful to aquatic life. In surface waters, dissolved oxygen concentrations are influenced directly or indirectly by numerous interacting environmental factors, including temperature, atmospheric pressure, light intensity, ice cover, water clarity, and photosynthesis and respiration of plants and animals. Particular combinations of these factors can result in low dissolved oxygen levels unrelated to human impacts. For example, during summer and autumn, stratification in lakes or low flow in streams can result in dissolved oxygen depression (Hynes 1970). As reflected in the thresholds in Table 1, acute or chronic differences as small as 0.5 to 1.0 mg/l in dissolved oxygen concentration represent meaningful differences in potential effects on aquatic life. Such small critical differences coupled with relatively high natural variability confound the ability to select dissolved oxygen thresholds (i.e., water quality standards) that can consistently distinguish deleterious human impacts from natural influences on aquatic life. Developers of water-quality standards for dissolved oxygen widely recognize this difficulty (Aquatic Life Advisory Committee of the Ohio River Valley Water Sanitation Commission 1955; Davis 1975; Davis et al. 1979; USEPA 1986; Truelson 1997). USEPA (1986) states, "Naturally-occurring dissolved oxygen concentrations" may occasionally fall below target criteria levels due to a combination of low flow, high

temperature, and natural oxygen demand... Under these circumstances the numerical criteria should be considered unattainable, but naturally-occurring conditions which fail to meet criteria should not be interpreted as violations of criteria. Although further reductions in dissolved oxygen may be inadvisable, effects of any reductions should be compared to natural ambient conditions and <u>not to ideal conditions</u>" (p. 28; emphasis added).

To be useful, Illinois dissolved oxygen standards must accommodate the reality of how dissolved oxygen naturally varies through time and across locations in Illinois. Illinois DNR and Illinois EPA recommend an additional narrative part of the dissolved oxygen standards that addresses these issues. Specifically, Illinois DNR and Illinois EPA recommend that:

General Use waters at all locations shall maintain sufficient dissolved oxygen concentrations to prevent offensive conditions.... Quiescent and isolated sectors of General Use waters including but not limited to wetlands, sloughs, backwaters and lakes and reservoirs below the thermocline shall be maintained at sufficient dissolved oxygen concentrations to support their natural ecological functions and resident aquatic communities (See Toby Frevert Pre-filed Testimony, Attachment 1).

Which Illinois streams have a meaningful amount of sensitive organisms and thus require enhanced protection for dissolved oxygen?

Identify specific stream sites in Illinois that have a meaningful amount of sensitive organisms

Fish Dataset: Fish-community samples collected with various sampling gears in 1994 through 2005 by Illinois DNR were used. Fish data from the large rivers (i.e., Mississippi, Illinois, Wabash, and Ohio) were analyzed separately. Data from 1028 stations, including 98 large-river locations, were included in the analysis. Because a site may have been sampled multiple times for fish during the evaluation time frame, proportion of individuals and number of species from each sample were averaged to provide a single value for each biological measure for each site.

Macroinvertebrate Dataset (except mussels): Macroinvertebrate-community samples collected in 2001 through 2004 and available in the Illinois EPA BIOS database were used. Data from 380 stations were included in the analysis. Samples used were limited to those collected from wadable streams via Illinois EPA's recently incorporated "20-jab method". Before 2001, Illinois EPA collected stream-macroinvertebrate samples via a different method that precludes valid among-sample comparisons of proportional abundances, for example, the proportion of individuals identified as most sensitive to low dissolved oxygen. Differences between past and present collection methods also preclude combining data when determining the number of sensitive taxa per site because each method selectively collects different macroinvertebrate taxa.

Mussel Dataset: Mussel data compiled by the Illinois Natural History Survey from 1980 through 2005 were used. Species examined included *Elliptio crassidens* and those identified by Illinois DNR mussel experts as intolerant and riffle-dwelling. Data were collected through field collections including hand picking, brailing, and diving, as well as museum records. Locations were limited to include only presence of live mussels.

Of the 1110 sites evaluated, 329 had both fish and macroinvertebrate data; 699 sites had fish data only and 82 sites had macroinvertebrate data only.

Illinois DNR and Illinois EPA selected four biological measures by which to characterize each stream site: the number of sensitive fish species (see Table 2), the proportion of individual fish that are sensitive, the number of sensitive macroinvertebrate taxa (see Table 3), and the proportion of individual macroinvertebrates that are sensitive. Because available mussel data did not comprise community assessments, number of sensitive species and proportion of sensitive individuals could not be calculated.

Illinois DNR and Illinois EPA selected threshold values that represent the number of sensitive species/taxa and the proportional abundance of sensitive individuals typical of healthy streams. Threshold values for each of the four biological measures (Table 5) were determined by calculating the median value from sampling sites that were identified as attaining the Clean Water Act goal for aquatic life, referred to as full support. The calculation of the median was limited to full support waters in an attempt to limit the influence of environmental stresses, including habitat and chemicals. In large rivers, full support sites were chosen only from sites that fell on the main channel (i.e., not backwaters or side channels). The number of full support sites used to calculate threshold values varied from 45 sites in large rivers (i.e., Mississippi, Illinois, Wabash, and Ohio) to 368 sites for fish in streams and non-large rivers, with 246 full-support sites for macroinvertebrates.

For each site, values for each of the four biological measures were compared to established threshold values. Sites were selected as having a meaningful amount of sensitive organisms if at least two of the four biological measures considered equaled or exceeded the established threshold value for that measure. Sites that had fish-only or macroinvertebrate-only data were eligible for selection if they met or exceeded both thresholds for the available taxonomic group.

Table 5. Threshold values for each amount of sensitive orga	n biological measure used nisms.	to determine a meaningful
· · · · · · · · · · · · · · · · · · ·	Percent as Sensitive Individuals	Number of Sensitive Taxa
- Fish – Large Rivers	2.63	2
Fish – Streams/non-large rivers	9.3	4
Macroinvertebrates	6.25	5

Because of differences in the methods used to collect mussels vs. other macroinvertebrates in Illinois streams, the site-specific information available for mussels is not directly comparable. Consequently, the thresholds in Table 5 do not apply to the mussel information. Rather, any site known to be inhabited by at least one of the two dissolved oxygen-sensitive mussel species (i.e., *Villosa iris* and *Elliptio crassidens*) was considered to have a meaningful amount of sensitive organisms.

In summary, the analysis identified 374 stream sites that have a meaningful amount of sensitive organisms (Figure 2).

Figure 2. Stream sites from which fish, macroinvertebrate, or both types of information were used to determine locations that have meaningful amounts of dissolved oxygen-sensitive organisms.

Extrapolate site-based results to identify Illinois stream segments that require enhanced dissolved oxygen protection

Based on the widely documented knowledge that the physical and chemical properties of the water at a stream site reflect upstream influences (e.g., Omernik et al. 1981; Smart et al. 1981; Hunsaker and Levine 1995; but see Allan and Johnson 1997), Illinois DNR and Illinois EPA believe that the presence of a meaningful amount of sensitive organisms at a site reflects the need for enhanced dissolved oxygen protection at the site as well as upstream of the site. Unfortunately, Illinois DNR and Illinois EPA know of no criteria that can identify definitively the upstream extent of influence on dissolved oxygen for each site of concern; therefore, some simple, practical constraints for extrapolating from site-specific information to upstream stream segments were used. Specifically, the map-based information listed below was used to identify stream segments expected to have meaningful amounts of sensitive organisms and therefore requiring enhanced dissolved oxygen standards, i.e., minima higher than the USEPA (1986) "warmwater" criteria.

Illinois DNR and Illinois EPA primarily used four pieces of information referenced to or depicted as computer-mapped information throughout Illinois:

- set of stream sites at which fish or macroinvertebrate samples indicate occurrence of a meaningful amount of sensitive organisms (Figure 2);
- set of stream sites at which fish or macroinvertebrate samples indicate lack of a meaningful amount of sensitive organisms (Figure 2);
- 3) Illinois streams that are part of the National Hydrography Dataset (1:100,000 map

scale). This dataset is a "comprehensive set of digital spatial data that contains information about surface water features such as lakes, ponds, streams, rivers, springs and wells" (internet website: //nhd.usgs.gov/). This dataset is sponsored by the U. S. Geological Survey and the U. S. Environmental Protection Agency;

4) U.S. Geological Survey 7.5-minute topographic maps (map scale 1:24,000) for Illinois.

Figure 3 highlights the process for selecting stream segments for enhanced dissolved oxygen protection. These highlights do not apply to segments in the largest Illinois streams: Illinois River, Mississippi River, Ohio River, and Wabash River, which are addressed later in this section. First, proceeding upstream, any stream segment collocated with a site that has a meaningful amount of sensitive organisms was selected for enhanced protection. Second, for stream segments not collocated with, but upstream of, a site that has a meaningful amount of sensitive organisms, the segment was selected for enhanced protection only if all of these criteria applied:

- The nearest downstream site that has sufficient biological information has a meaningful amount of sensitive organisms.
- 2) The nearest downstream site that has sufficient biological information is not a large-river site (see above). Illinois DNR and Illinois EPA judge that selecting all stream segments that occur upstream of a large-river site that has a meaningful amount of sensitive organisms is

an unreasonable approach. Such widespread extrapolation takes the concept of upstream influence to an impractical extreme.

- 3) The stream segment is not smaller than third order in size. Stream order is a relative measure of stream size; larger orders represent larger streams. Using third order as a size limit is consistent with the extent of the site-based fish and macroinvertebrate information used, which predominantly is from third-order streams and larger. Importantly, not all stream segments smaller than third order were denied enhanced protection outright. As per the first criterion, regardless of stream size, if sufficient biological information is available from the segment and the information indicates presence of a meaningful amount of sensitive organisms, the segment was selected for enhanced protection. Consequently, statewide, about 6% of the stream length selected for enhanced dissolved oxygen protection comprises streams smaller than third order.
- 4) The "stream segment" is free-flowing, i.e., not obviously part of a lake, reservoir, or largeriver backwater. As previously mentioned, lakes, reservoirs, backwaters, and other lentic habitats require separate consideration from free-flowing streams when developing water quality standards for dissolved oxygen.

With the above exceptions, the selection of stream segments for enhanced protection proceeded upstream from any site that has a meaningful amount of sensitive organisms (Figure 4, "A" arrows). If a site was encountered that has sufficient biological information that indicates lack of a meaningful amount of sensitive organisms, then selection ceased about halfway to that point or

at a practical endpoint such as an obvious confluence ("B" arrows). In a few cases, stream segments in the vicinity of a site that lacks a meaningful amount of sensitive organisms nonetheless were selected for enhanced dissolved oxygen protection because other nearby sites both upstream and downstream have meaningful amounts of sensitive organisms ("C" arrow). In general, in selecting stream segments for enhanced protection or not, evidence of a meaningful amount of sensitive organisms in the vicinity preceded lack of such evidence in the vicinity.

For large rivers, segments that include a site that has a meaningful amount of sensitive organisms were selected for enhanced dissolved oxygen protection. For the part of Mississippi River comprising navigational pools, all segments in the same river pool as a site that has a meaningful amount of sensitive organisms were selected. For the other large rivers, segments in the vicinity of a site that lacks a meaningful amount of sensitive organisms nonetheless were selected for enhanced dissolved oxygen protection for situations in which other nearby sites both upstream and downstream have meaningful amounts of sensitive organisms.

Figure 5 shows the stream segments that were selected by Illinois DNR and Illinois EPA for enhanced dissolved oxygen protection. A table containing stream names and location information of each stream segment can be found in the Attachment 1 of Toby Frevert's Prefiled testimony. To generate this list, each selected stream segment was spatially located using a geographic information system (GIS). Latitude and longitude values were identified for each starting and ending point and a unique segment number was assigned to each pair of starting and ending points. The stream name of each segment was based on United States Geological Survey 7.5-minute digital topographic maps.

Proceeding upstream,

for each stream segment...

Figure 3. Guidelines for using site-specific fish or macroinvertebrate information to identify stream segments that require enhanced dissolved oxygen protection. These guidelines apply for segments not part of Illinois River, Mississippi River, Ohio River, or Wabash River.

- Stream that is third-order or larger
- Stream that is third-order or larger and selected for enhanced dissolved oxygen protection

Stream site that has sufficient biological information, but lacks a meaningful amount of sensitive organisms

Stream site that has sufficient biological information and a meaningful amount of sensitive organisms

Lake or reservoir

Figure 4. Example of using site-specific fish or macroinvertebrate information to identify stream segments that require enhanced dissolved oxygen protection Labeled arrows indicate examples addressed in the text.

Figure 5. Illinois streams selected for enhanced dissolved oxygen protection.

Review of stream segments selected for enhanced dissolved oxygen protection

Field biologists affiliated with Illinois DNR and Illinois EPA reviewed the stream segments selected for enhanced dissolved oxygen protection. Also, additional information on the presence of some mussel species was used to evaluate the selections. Although data on mussel sensitivity to low dissolved oxygen are limited, evidence suggests that riffle-dwelling mussel species are more sensitive than other types (Johnson et al. 2001). USEPA (1986) recognizes this connection to habitat. "In general, stream invertebrates that are requisite riffle-dwellers probably have a higher dissolved oxygen requirement than other aquatic invertebrates" (p. 3). Mussel experts in Illinois identified seven intolerant mussel species (including *V. iris*) as primarily riffle dwelling (Table 6). Ninety-seven percent of locations of riffle-dwelling mussels occur on segments selected for enhanced dissolved oxygen protection, thereby corroborating Illinois DNR's and Illinois EPA's use of the fish and non-mussel macroinvertebrate information in locating waters for enhanced protection.

.....

Table 6. Intolerant, riffle-dwelling mussel species in Illinois.							
Common Name	Scientific Name						
Purple Wartyback	Cyclonaias tuberculata						
Rabbitsfoot	Quadrula cylindrica						
Snuffbox	Epioblasma triquetra						
Wavyrayed Lampmussel	Lampsilis fasciola						
Kidneyshell	Ptychobranchus fasciolaris						
Ellipse	Venustaconcha ellipsiformis						
Rainbow	Villosa iris						

- Allan, J. D. and L. B. Johnson. 1997. Catchment-scale analysis of aquatic ecosystems. Freshwater Biology 37:107-111.
- Aquatic Life Advisory Committee of the Ohio River Valley Water Sanitation Commission. 1955. Aquatic life water quality criteria. First Progress Report. Sewage and Industrial Wastes 27:321-331.
- Aquatic Life Advisory Committee of the Ohio River Valley Water Sanitation Commission. 1956. Aquatic life water quality criteria. Second Progress Report. Sewage and Industrial Wastes 28:678-690.
- Bailey, R. M. and six others. 1970. A list of common and scientific names of fishes from the United States and Canada. Third edition. American Fisheries Society Special Publication Number 6, Washington, D.C.
- Becker, G. C. 1983. Fishes of Wisconsin. The University of Wisconsin Press, Madison, Wisconsin.
- Chen, Li-Yen, A. G. Heath, and R. J. Neves. 2001. Comparison of oxygen consumption in freshwater mussels (Unionidae) from different habitats during declining dissolved oxygen concentration. Hydrobiologia 450:209-214.

- Connolly, N. M., M. R. Crossland, and R. G. Pearson. 2004. Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society 23:251-270.
- Davis, J. C. 1975. Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. Journal of the Fisheries Research Board of Canada 32:2295-2332.
- Davis, J. C. and eight others. 1979. Dissolved oxygen. Pages 169-174 in R.V. Thurston, R. C.
 Russo, C. M. Fetterolf, Jr., T. A. Edsall, and Y. M. Barber, Jr. (editors). A review of the
 EPA Red Book: quality criteria for water. Water Quality Section, American Fisheries
 Society, Bethesda, Maryland.
- Etnier, D. A. and W. C. Starnes. 1993. The fishes of Tennessee. The University of Tennessee Press, Knoxville, Tennessee.
- Hilsenhoff, W. L. 1977. Use of arthropods to evaluate water quality of streams. Technical Bulletin Number 100. Wisconsin Department of Natural Resources, Madison, Wisconsin.
- Hunsaker, C. T. and D. A. Levine. 1995. Hierarchical approaches to the study of water quality in rivers. BioScience 45:193-203.
- Hynes, H. B. N. 1970. The ecology of running waters. University of Toronto Press, Toronto, Ontario.
- Illinois Pollution Control Board. 1972. In the Matter of : Water Quality Standards Revisions, #R 71-14, Opinion of the Board, March 7, 1972.
- Jenkins, R. E. and N. M. Burkhead. 1994. Freshwater fishes of Virginia. American Fisheries Society, Bethesda, Maryland.

Johnson, P. M., A. E. Liner, S. W. Golladay, and W. K. Michener. 2001. Effects of drought on freshwater mussels and instream habitat in Coastal Plain tributaries of the Flint River, southwest Georgia (July – October, 2000). Final Report, presented to The Nature Conservancy, Apalachicola River and Bay Project,

http://www.jonesctr.org/research/aquatics_research/final_report2.pdf

- Michigan Department of Natural Resources (Michigan DNR). 2004. Black bass fishing seasons in Michigan: background, research review, and recommendations. Michigan Department of Natural Resources, Fisheries Division.
- Moore, W. G. 1942. Field studies on the oxygen requirements of certain fresh-water fishes. Ecology 23:319-329.

- Omernik, J. M., Abernathy, A. R., and L. M. Male. 1981. Stream nutrient levels and proximity of agricultural and forest land to streams: some relationships. Journal of Soil and Water Conservation 36:227-231.
- Pflieger, W. L. 1997. The fishes of Missouri. Conservation Commission of the State of Missouri, Jefferson City, Missouri.
- Rankin, E. T. 2004 (draft). Notes on associations between dissolved oxygen and fish and macroinvertebrate assemblages in wadeable Ohio streams. November 12, Center for Applied Bioassessment and Biocriteria, Columbus, Ohio.
- Robison, H. W. and T. M. Buchanan. 1988. Fishes of Arkansas. The University of Arkansas Press, Fayetteville, Arkansas.
- Sallee, R. D., J. Langein, H. Brown, and J. Ferencak. 1991. Effects of discharge fluctuations on survival of smallmouth bass in the Kankakee River, Illinois. First International Smallmouth Bass Symposium 90-95.
- Simon, T. P. and R. Wallus. 2003. Ictaluridae catfish and madtoms. Vol. 3, in Wallus, Yeager, and Simon. Reproductive biology and early life history of fishes in the Ohio River drainage. Tennessee Valley Authority, Chattanooga, Tennessee.

- Simonson, T. 2001. Wisconsin's black bass management plan-Administrative Report No. 54. Wisconsin Department of Natural Resources, Bureau of Fisheries Management and Habitat Protection, Madison, Wisconsin.
- Smale, M. A. and C. F. Rabeni. 1995. Hypoxia and hypothermia tolerances of headwater stream fishes. Transactions of the American Fisheries Society 124:698-710.
- Smart, M. M., T. W. Barney, and J. R. Jones. 1981. Watershed impact on stream water quality: a technique for regional assessment. Journal of Soil and Water Conservation 36:297-300.

Smith, P.W. 1979. The fishes of Illinois. University of Illinois Press, Urbana, Illinois.

- Truelson, R. L. 1997. Ambient water quality criteria for dissolved oxygen. Prepared pursuant to section 2(e) of the Environmental Management Act, 1981. Water Management Branch, Ministry of Environment, Lands, and Parks, Vancouver, British Columbia.
- U.S. Environmental Protection Agency (USEPA). 1986. Ambient aquatic life water quality criteria for dissolved oxygen (freshwater). EPA 440/5-86-003, April 1986, Office of Research and Development, Environmental Research Laboratories, Duluth, Minnesota.
- Weber, C. I. 1973. Biological field and laboratory methods for measuring the quality of surface waters and effluents. EPA-670/4-73-001, USEPA, Cincinnati, Ohio.

SERVICE LIST R 04-25

Michael Rosenberg, Esq. Richard Lanyon Metropolitan Water Reclamation District 100 East Erie Street Chicago, Illinois 60611

Matthew Dunn Office of the Attorney General 188 West Randolph, 20th Floor Chicago, Illinois 60601

Roy Harsch Sheila Deeley Gardner Carton & Douglas 191 N Wacker Drive, Suite 3700 Chicago, Illinois 60606

John Donahue City of Geneva 22 South First Street Geneva, Illinois 60134

N. LaDonna Driver Illinois Environmental Regulatory Group 3150 Roland Avenue Springfield, Illinois 62703

Benard Sawyer Metropolitan Water Reclamation District 6001 W Pershing Rd Cicero, Illinois 60650

Lisa Frede Chemical Industry Council of Illinois 2250 E Devon Avenue, Suite 239 Des Plaines, Illinois 60018

James Daugherty Thorn Creek Basin Sanitary District 700 West End Avenue Chicago Heights, Illinois 60411 Claire Manning Brown, Hay & Stephens LLP 205 South 5th Street PO Box 2459 Springfield, Illinois 62705

Tracy Elzemeyer Illinois-American Water Company 535 North New Ballas Road St. Louis, MO 63141

Katherine Hodge Hodge Dwyer Zeman 3150 Roland Avenue PO Box 5776 Springfield, Illinois 62705

Margaret Howard Hedinger Law Office 2601 South 5th Street Springfield, Illinois 62703

Frederick Keady Vermillion Coal Company 1979 Johns Drive Glenview, Illinois 60025

Fred Hubbard 19 West Madison PO Box 12 Danville, Illinois 61834

W.C. Blanton Blackwell Sanders Peper Martin LLP 4801 Main Street, Suite 1000 Kansas City, MO 64112

Dennis Duffield Dept of Public Works & Utilities 921 E. Washington Street Joliet, Illinois 60431

CON'T SERVICE LIST R 04-25

Mike Callahan Bloomington Normal Water Reclamation District PO Box 3307 Bloomington, Illinois 61702-3307

Larry Cox Downers Grove Sanitary District ⁻ 2710 Curtiss Street Downers Grove, Illinois 60515

Tom Muth Fox Metro Water Reclamation District 682 State Route 31 Oswego, Illinois 60543

Stanley Yonkawski Illinois Department of Natural Resources One Natural Resources Way Springfield, Illinois 62702-1271

Erika Powers Barnes & Thornburg 1 N Wacker, Suite 4400 Chicago, Illinois 60606

Albert Ettinger Environmental Law & Policy Center 35 E Wacker, Suite 1300 Chicago, Illinois 60601 Todd Main Friends of the Chicago River 407 S Dearborn, Suite 1580 Chicago, Illinois 60605

Vicky McKinley Evanston Environment Board 223 Grey Avenue Evanston, Illinois 60202

Irwin Polls Ecological Monitoring & Assessment 3206 Maple Leaf Drive Glenview, Illinois 60025

William Richardson Illinois Department of Natural Resources One Natural Resources Way Springfield, Illinois 62702-1271

Marc Miller Michael Fischer Office of Lt. Governor Pat Quinn State House, Room 214 Springfield, Illinois 62706

Thomas Murphy 2325 N Clifton Street Chicago, Illinois 60614 STATE OF ILLINOIS

COUNTY OF SANGAMON

PROOF OF SERVICE

) SS.

I, the undersigned, on oath state that I have served the attached Pre-filed

Testimony of Toby Frevert, Roy Smogor and Joel Cross upon the person to whom it is

directed, by placing it in an envelope addressed to:

NOTICE

TO: Dorothy Gunn, Clerk Illinois Pollution Control Board James R. Thompson Center 100 W. Randolph Street 11-500 Chicago, Illinois 60601 (OVERNIGHT VIA MAIL) Richard McGill, Hearing Officer Illinois Pollution Control Board James R. Thompson Center 100 W. Randolph Street, Suite 11-500 Chicago, Illinois 60601 (OVERNIGHT VIA MAIL)

SEE ATTACHED SERVICE LIST Regular Mail

and mailing it First Class Mail from Springfield, Illinois on April 3, 2006, with sufficient

postage affixed.

Mancy J&) Lamport

SUBSCRIBED AND SWORN TO BEFORE ME

This 3rd day of April, 2006

Notary Public

OFFICIAL SEAL CYNTHIA L. WOLFE NOTARY PUBLIC, STATE OF ILLINOIS MY COMMISSION EXPIRES 4:50-2007.

THIS FILING IS SUBMITTED ON RECYCELD PAPER